Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs.


Journal

CNS drugs
ISSN: 1179-1934
Titre abrégé: CNS Drugs
Pays: New Zealand
ID NLM: 9431220

Informations de publication

Date de publication:
07 2022
Historique:
accepted: 19 05 2022
pubmed: 28 6 2022
medline: 9 7 2022
entrez: 27 6 2022
Statut: ppublish

Résumé

While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.

Identifiants

pubmed: 35759210
doi: 10.1007/s40263-022-00930-4
pii: 10.1007/s40263-022-00930-4
pmc: PMC9243954
doi:

Substances chimiques

Pharmaceutical Preparations 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

739-770

Subventions

Organisme : CIHR
ID : CPG-151963
Pays : Canada

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Pfefferbaum B, North CS. Mental health and the Covid-19 pandemic. N Engl J Med. 2020;383(6):510–2.
doi: 10.1056/NEJMp2008017
Whiteford HA, Ferrari AJ, Degenhardt L, Feigin V, Vos T. The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study 2010. PLoS ONE. 2015;10(2):1–14. https://doi.org/10.1371/journal.pone.0116820 .
doi: 10.1371/journal.pone.0116820
Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015. https://doi.org/10.1101/CSHPERSPECT.A020412 .
doi: 10.1101/CSHPERSPECT.A020412 pubmed: 25561720 pmcid: 4292164
Profaci CP, Munji RN, Pulido RS, Daneman R. The blood–brain barrier in health and disease: important unanswered questions. J Exp Med. 2020. https://doi.org/10.1084/JEM.20190062/151582 .
doi: 10.1084/JEM.20190062/151582 pubmed: 32211826 pmcid: 7144528
Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14. https://doi.org/10.1602/NEURORX.2.1.3 .
doi: 10.1602/NEURORX.2.1.3 pubmed: 15717053 pmcid: 539316
Benedetti MS, et al. Drug metabolism and pharmacokinetics. Drug Metab Rev. 2009;41(3):344–90. https://doi.org/10.1080/10837450902891295 .
doi: 10.1080/10837450902891295 pubmed: 19601718
Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019. https://doi.org/10.3390/PHARMACEUTICS11030129 .
doi: 10.3390/PHARMACEUTICS11030129 pubmed: 30893852 pmcid: 6471246
Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7(18):967–75. https://doi.org/10.1016/S1359-6446(02)02452-2 .
doi: 10.1016/S1359-6446(02)02452-2 pubmed: 12546871
Agarwal SK, Kriel RL, Brundage RC, Ivaturi VD, Cloyd JC. A pilot study assessing the bioavailability and pharmacokinetics of diazepam after intranasal and intravenous administration in healthy volunteers. Epilepsy Res. 2013;105(3):362–7. https://doi.org/10.1016/J.EPLEPSYRES.2013.02.018 .
doi: 10.1016/J.EPLEPSYRES.2013.02.018 pubmed: 23561287
Dufes C, Olivier JC, Gaillard F, Gaillard A, Couet W, Muller JM. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int J Pharm. 2003;255(1–2):87–97. https://doi.org/10.1016/S0378-5173(03)00039-5 .
doi: 10.1016/S0378-5173(03)00039-5 pubmed: 12672605
Hoekman J, Ray S, Aurora SK, Shrewsbury SB. The upper nasal space—a novel delivery route ideal for central nervous system drugs. US Neurol. 2020;16(1):25. https://doi.org/10.17925/USN.2020.16.1.25 .
doi: 10.17925/USN.2020.16.1.25
Kashyap K, Shukla R. Drug delivery and targeting to the brain through nasal route: mechanisms, applications and challenges. Curr Drug Deliv. 2019;16(10):887–901. https://doi.org/10.2174/1567201816666191029122740 .
doi: 10.2174/1567201816666191029122740 pubmed: 31660815
Xu J, Tao J, Wang J. Design and application in delivery system of intranasal antidepressants. Front Bioeng Biotechnol. 2020;8: 626882. https://doi.org/10.3389/FBIOE.2020.626882 .
doi: 10.3389/FBIOE.2020.626882 pubmed: 33409272 pmcid: 7779764
Rabiee N, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv Ther. 2021;4(3):2000076. https://doi.org/10.1002/ADTP.202000076 .
doi: 10.1002/ADTP.202000076
Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2021. https://doi.org/10.1007/S13346-020-00891-5 .
doi: 10.1007/S13346-020-00891-5 pubmed: 33491126 pmcid: 7829061
Tan MSA, Parekh HS, Pandey P, Siskind DJ, Falconer JR. Nose-to-brain delivery of antipsychotics using nanotechnology: a review. Expert Opin Drug Deliv. 2020;17(6):839–53. https://doi.org/10.1080/17425247.2020.1762563 .
doi: 10.1080/17425247.2020.1762563 pubmed: 32343186
Kumarasamy M, Sosnik A. The nose-to-brain transport of polymeric nanoparticles is mediated by immune sentinels and not by olfactory sensory neurons. Adv Biosyst. 2019. https://doi.org/10.1002/ADBI.201900123 .
doi: 10.1002/ADBI.201900123 pubmed: 32648679
Katare YK, et al. Intranasal delivery of antipsychotic drugs. Schizophr Res. 2017;184:2–13. https://doi.org/10.1016/J.SCHRES.2016.11.027 .
doi: 10.1016/J.SCHRES.2016.11.027 pubmed: 27913162
Sobiesk JL, Munakomi S. Anatomy, head and neck, nasal cavity. StatPearls. 2021. [Online]. https://www.ncbi.nlm.nih.gov/books/NBK544232/ . Accessed 24 Jan 2022.
Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Release. 2003;87(1–3):187–98. https://doi.org/10.1016/S0168-3659(02)00363-2 .
doi: 10.1016/S0168-3659(02)00363-2 pubmed: 12618035
Patel RG. Nasal anatomy and function. Facial Plast Surg. 2017;33(1):3–8. https://doi.org/10.1055/S-0036-1597950 .
doi: 10.1055/S-0036-1597950 pubmed: 28226365
Jafek BW. Ultrastructure of human nasal mucosa. Laryngoscope. 1983;93(12):1576–99. https://doi.org/10.1288/00005537-198312000-00011 .
doi: 10.1288/00005537-198312000-00011 pubmed: 6645759
Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017. https://doi.org/10.1101/CSHPERSPECT.A028241 .
doi: 10.1101/CSHPERSPECT.A028241 pubmed: 27864314 pmcid: 5378048
Marttin E, Schipper NGM, Coos Verhoef J, Merkus FWHM. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):13–38. https://doi.org/10.1016/S0169-409X(97)00059-8 .
doi: 10.1016/S0169-409X(97)00059-8 pubmed: 10837578
Oneal RM, Beil J, Schlesinger J. Surgical anatomy of the nose. Otolaryngol Clin N Am. 1999;32(1):145–81. https://doi.org/10.1016/S0030-6665(05)70119-5 .
doi: 10.1016/S0030-6665(05)70119-5
Moran DT, Rowley JC, Jafek BW, Lovell MA. The fine structure of the olfactory mucosa in man. J Neurocytol. 1982;11(5):721–46. https://doi.org/10.1007/BF01153516 .
doi: 10.1007/BF01153516 pubmed: 7143026
Field PM, Li Y, Raisman G. Ensheathment of the olfactory nerves in the adult rat. J Neurocytol. 2003;32(3):317–24. https://doi.org/10.1023/B:NEUR.0000010089.37032.48 .
doi: 10.1023/B:NEUR.0000010089.37032.48 pubmed: 14724393
Smith KE, Whitcroft K, Law S, Andrews P, Choi D, Jagger DJ. Olfactory ensheathing cells from the nasal mucosa and olfactory bulb have distinct membrane properties. bioRxiv. 2019. https://doi.org/10.1101/640839 .
doi: 10.1101/640839
Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol. 2006;34(3):252–69. https://doi.org/10.1080/01926230600713475 .
doi: 10.1080/01926230600713475 pubmed: 16698724
Thorne RG, Emory CR, Ala TA, Frey WH. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995;692(1–2):278–82. https://doi.org/10.1016/0006-8993(95)00637-6 .
doi: 10.1016/0006-8993(95)00637-6 pubmed: 8548316
Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res. 1986;63(3):461–73. https://doi.org/10.1007/BF00237470 .
doi: 10.1007/BF00237470 pubmed: 3758265
Balin BJ, Broadwell RD, Salcman M, El-Kalliny M. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol. 1986;251(2):260–80. https://doi.org/10.1002/CNE.902510209 .
doi: 10.1002/CNE.902510209 pubmed: 3782501
Purves D, et al. The olfactory epithelium and olfactory receptor neurons. 2001. [Online]. https://www.ncbi.nlm.nih.gov/books/NBK10896/ . Accessed 24 Jan 2022.
Ahmad AB, Bennett PN, Rowland M. Influence of route of hepatic administration on drug availability. J Pharmacol Exp Ther. 1984;230(3):718–25.
pubmed: 6470976
Nedelcovych MT, et al. Pharmacokinetics of intranasal versus subcutaneous insulin in the mouse. ACS Chem Neurosci. 2018;9(4):809–16. https://doi.org/10.1021/ACSCHEMNEURO.7B00434 .
doi: 10.1021/ACSCHEMNEURO.7B00434 pubmed: 29257872
Yoffey JM, Sullivan ER, Drinker CK. The lymphatic pathway from the nose and pharynx : the absorption of certain proteins. J Exp Med. 1938;68(6):941–7. https://doi.org/10.1084/JEM.68.6.941 .
doi: 10.1084/JEM.68.6.941 pubmed: 19870828 pmcid: 2133714
Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70. https://doi.org/10.1016/J.BRAINRESBULL.2018.10.009 .
doi: 10.1016/J.BRAINRESBULL.2018.10.009 pubmed: 30449731
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28. https://doi.org/10.1016/j.addr.2011.11.002 .
doi: 10.1016/j.addr.2011.11.002 pubmed: 22119441
Thorne RG, Pronk GJ, Padmanabhan V, Frey WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96. https://doi.org/10.1016/J.NEUROSCIENCE.2004.05.029 .
doi: 10.1016/J.NEUROSCIENCE.2004.05.029 pubmed: 15262337
Ozsoy Y, Gngör S. Nasal route: an alternative approach for antiemetic drug delivery. Expert Opin Drug Deliv. 2011;8(11):1439–53. https://doi.org/10.1517/17425247.2011.607437 .
doi: 10.1517/17425247.2011.607437 pubmed: 22004793
Esposito E, et al. Nanoformulations for dimethyl fumarate: physicochemical characterization and in vitro/in vivo behavior. Eur J Pharm Biopharm. 2017;115:285–96. https://doi.org/10.1016/J.EJPB.2017.04.011 .
doi: 10.1016/J.EJPB.2017.04.011 pubmed: 28412473
Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311. https://doi.org/10.18433/J3NC79 .
doi: 10.18433/J3NC79 pubmed: 20067706
Donovan MD, Flynn GL, Amidon GL. Absorption of polyethylene glycols 600 through 2000: the molecular weight dependence of gastrointestinal and nasal absorption. Pharm Res. 1990;7(8):863–8. https://doi.org/10.1023/A:1015921101465 .
doi: 10.1023/A:1015921101465 pubmed: 2235883
Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018. https://doi.org/10.3390/PHARMACEUTICS10030116 .
doi: 10.3390/PHARMACEUTICS10030116 pubmed: 30081536 pmcid: 6161189
Shaikh R, Raj Singh T, Garland M, Woolfson A, Donnelly R. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89. https://doi.org/10.4103/0975-7406.76478 .
doi: 10.4103/0975-7406.76478 pubmed: 21430958 pmcid: 3053525
Dahl AR, Hadley WM. Nasal cavity enzymes involved in xenobiotic metabolism: effects on the toxicity of inhalants. Crit Rev Toxicol. 1991;21(5):345–72. https://doi.org/10.3109/10408449109019571 .
doi: 10.3109/10408449109019571 pubmed: 1741949
Sarkar MA. Drug metabolism in the nasal mucosa. Pharm Res. 1992;9(1):1–9. https://doi.org/10.1023/A:1018911206646 .
doi: 10.1023/A:1018911206646 pubmed: 1589391
Oliveira P, Fortuna A, Alves G, Falcao A. Drug-metabolizing enzymes and efflux transporters in nasal epithelium: influence on the bioavailability of intranasally administered drugs. Curr Drug Metab. 2016;17(7):628–47. https://doi.org/10.2174/1389200217666160406120509 .
doi: 10.2174/1389200217666160406120509 pubmed: 27048181
Bleier BS, Nocera AL, Iqbal H, Hoang JD, Feldman RE, Han X. P-glycoprotein functions as an immunomodulator in healthy human primary nasal epithelial cells. Int Forum Allergy Rhinol. 2013;3(6):433–8. https://doi.org/10.1002/ALR.21166 .
doi: 10.1002/ALR.21166 pubmed: 23520057
Graff CL, Pollack GM. Functional evidence for P-glycoprotein at the nose-brain barrier. Pharm Res. 2005;22(1):86–93. https://doi.org/10.1007/S11095-004-9013-3 .
doi: 10.1007/S11095-004-9013-3 pubmed: 15771234
Henriksson G, Norlander T, Zheng X, Stierna P, Westrin KM. Expression of P-glycoprotein 170 in nasal mucosa may be increased with topical steroids. Am J Rhinol. 1997;11(4):317–21. https://doi.org/10.2500/105065897781446603 .
doi: 10.2500/105065897781446603 pubmed: 9292183
Haumann R, Videira JC, Kaspers GJL, van Vuurden DG, Hulleman E. Overview of current drug delivery methods across the blood–brain barrier for the treatment of primary brain tumors. CNS Drugs. 2020;34(11):1121–31. https://doi.org/10.1007/S40263-020-00766-W/ .
doi: 10.1007/S40263-020-00766-W/ pubmed: 32965590 pmcid: 7658069
Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics. 2019. https://doi.org/10.3390/PHARMACEUTICS11030118 .
doi: 10.3390/PHARMACEUTICS11030118 pubmed: 31085997 pmcid: 6572383
Emami A, et al. Toxicology evaluation of drugs administered via uncommon routes: intranasal, intraocular, intrathecal/intraspinal, and intra-articular. Int J Toxicol. 2018;37(1):4–27. https://doi.org/10.1177/1091581817741840 .
doi: 10.1177/1091581817741840 pubmed: 29264927
England RJA, Homer JJ, Knight LC, Ell SR. Nasal pH measurement: a reliable and repeatable parameter. Clin Otolaryngol Allied Sci. 1999;24(1):67–8. https://doi.org/10.1046/J.1365-2273.1999.00223.X .
doi: 10.1046/J.1365-2273.1999.00223.X pubmed: 10196653
Łaszcz M, Witkowska A. Studies of phase transitions in the aripiprazole solid dosage form. J Pharm Biomed Anal. 2016;117:298–303. https://doi.org/10.1016/J.JPBA.2015.09.004 .
doi: 10.1016/J.JPBA.2015.09.004 pubmed: 26397209
Zeng F, Wang L, Zhang W, Shi K, Zong L. Formulation and in vivo evaluation of orally disintegrating tablets of clozapine/hydroxypropyl-β-cyclodextrin inclusion complexes. AAPS PharmSciTech. 2013;14(2):854–60. https://doi.org/10.1208/S12249-013-9973-X .
doi: 10.1208/S12249-013-9973-X pubmed: 23649995 pmcid: 3666014
Jawahar N, et al. Enhanced oral bioavailability of an antipsychotic drug through nanostructured lipid carriers. Int J Biol Macromol. 2018;110:269–75. https://doi.org/10.1016/J.IJBIOMAC.2018.01.121 .
doi: 10.1016/J.IJBIOMAC.2018.01.121 pubmed: 29402457
Saibi Y, Sato H, Tachiki H. Developing in vitro-in vivo correlation of risperidone immediate release tablet. AAPS PharmSciTech. 2012;13(3):890–5. https://doi.org/10.1208/S12249-012-9814-3 .
doi: 10.1208/S12249-012-9814-3 pubmed: 22696224 pmcid: 3429671
DeVane CL, Nemeroff CB. Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet. 2001;40(7):509–22. https://doi.org/10.2165/00003088-200140070-00003 .
doi: 10.2165/00003088-200140070-00003 pubmed: 11510628
Kojima T, et al. Claudin-binder C-CPE mutants enhance permeability of insulin across human nasal epithelial cells. Drug Deliv. 2016;23(8):2703–10. https://doi.org/10.3109/10717544.2015.1050530 .
doi: 10.3109/10717544.2015.1050530 pubmed: 26036653
Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev. 2021;171:266–88. https://doi.org/10.1016/J.ADDR.2021.02.008 .
doi: 10.1016/J.ADDR.2021.02.008 pubmed: 33617902
Uchida H, Kondoh M, Hanada T, Takahashi A, Hamakubo T, Yagi K. A claudin-4 modulator enhances the mucosal absorption of a biologically active peptide. Biochem Pharmacol. 2010;79(10):1437–44. https://doi.org/10.1016/J.BCP.2010.01.010 .
doi: 10.1016/J.BCP.2010.01.010 pubmed: 20096266
Suzuki H, et al. A toxicological evaluation of a claudin modulator, the C-terminal fragment of Clostridium perfringens enterotoxin, in mice. Pharmazie. 2011;66(7):543–6. https://doi.org/10.1691/PH.2011.0365 .
doi: 10.1691/PH.2011.0365 pubmed: 21812332
Song KH, Fasano A, Eddington ND. Enhanced nasal absorption of hydrophilic markers after dosing with AT1002, a tight junction modulator. Eur J Pharm Biopharm. 2008;69(1):231–7. https://doi.org/10.1016/J.EJPB.2007.10.011 .
doi: 10.1016/J.EJPB.2007.10.011 pubmed: 18039562
Song KH, et al. Paracellular permeation-enhancing effect of AT1002 C-terminal amidation in nasal delivery. Drug Des Dev Ther. 2015;9:1815–23. https://doi.org/10.2147/DDDT.S79383 .
doi: 10.2147/DDDT.S79383
Ukai K, Sakakura Y, Saida S. Interaction between mucociliary transport and the ciliary beat of chicken nasal mucosa. Arch Otorhinolaryngol. 1985;242(3):225–31. https://doi.org/10.1007/BF00453544 .
doi: 10.1007/BF00453544 pubmed: 4074180
Van Donk HJMD, Merkus FWHM. Decreases in ciliary beat frequency due to intranasal administration of propranolol. J Pharm Sci. 1982;71(5):595–6. https://doi.org/10.1002/JPS.2600710530 .
doi: 10.1002/JPS.2600710530 pubmed: 7097512
Feldman KS, Kim E, Czachowski MJ, Wu Y, Lo CW, Zahid M. Differential effect of anesthetics on mucociliary clearance in vivo in mice. Sci Rep. 2021;11(1):1–9. https://doi.org/10.1038/s41598-021-84605-y .
doi: 10.1038/s41598-021-84605-y
Doty RL, et al. Effect of esketamine nasal spray on olfactory function and nasal tolerability in patients with treatment-resistant depression: results from four multicenter, randomized, double-blind, placebo-controlled, phase III studies. CNS Drugs. 2021;35(7):781. https://doi.org/10.1007/S40263-021-00826-9 .
doi: 10.1007/S40263-021-00826-9 pubmed: 34235612 pmcid: 8310483
Stockhorst U, Pietrowsky R. Olfactory perception, communication, and the nose-to-brain pathway. Physiol Behav. 2004;83(1):3–11. https://doi.org/10.1016/J.PHYSBEH.2004.07.018 .
doi: 10.1016/J.PHYSBEH.2004.07.018 pubmed: 15501485
Kuehn BM. Zicam update. JAMA. 2010;303(16):1587–1587. https://doi.org/10.1001/JAMA.2010.457 .
doi: 10.1001/JAMA.2010.457
Boesveldt S, et al. Anosmia—a clinical review. Chem Sens. 2017;42(7):513–23. https://doi.org/10.1093/CHEMSE/BJX025 .
doi: 10.1093/CHEMSE/BJX025
Croy I, Nordin S, Hummel T. Olfactory disorders and quality of life–an updated review. Chem Sens. 2014;39(3):185–94. https://doi.org/10.1093/CHEMSE/BJT072 .
doi: 10.1093/CHEMSE/BJT072
Adler K, Wooten O, Philippoff W, Lerner E, Dulfano MJ. Physical properties of sputum. Am Rev Respir Dis. 1972;106(1):86–96. https://doi.org/10.1164/ARRD.1972.106.1.86 .
doi: 10.1164/ARRD.1972.106.1.86 pubmed: 5036835
Sorokowski P, et al. Sex differences in human olfaction: a meta-analysis. Front Psychol. 2019;10:242. https://doi.org/10.3389/FPSYG.2019.00242/ .
doi: 10.3389/FPSYG.2019.00242/ pubmed: 30814965 pmcid: 6381007
Lomauro A, Aliverti A. Sex differences in respiratory function. Breathe. 2018;14(2):131. https://doi.org/10.1183/20734735.000318 .
doi: 10.1183/20734735.000318 pubmed: 29875832 pmcid: 5980468
Fanta S, Kinnunen M, Backman JT, Kalso E. Population pharmacokinetics of S-ketamine and norketamine in healthy volunteers after intravenous and oral dosing. Eur J Clin Pharmacol. 2015;71(4):441–7. https://doi.org/10.1007/S00228-015-1826-Y .
doi: 10.1007/S00228-015-1826-Y pubmed: 25724645
Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018;128:337–62. https://doi.org/10.1016/J.EJPB.2018.05.009 .
doi: 10.1016/J.EJPB.2018.05.009 pubmed: 29733950
Craft S, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29–38. https://doi.org/10.1001/ARCHNEUROL.2011.233 .
doi: 10.1001/ARCHNEUROL.2011.233 pubmed: 21911655
Craft S, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: a randomized clinical trial. JAMA Neurol. 2020;77(9):1099–109. https://doi.org/10.1001/JAMANEUROL.2020.1840 .
doi: 10.1001/JAMANEUROL.2020.1840 pubmed: 32568367
Rollema C, Van Roon EN, De Vries TW. Inadequate quality of administration of intranasal corticosteroid sprays. J Asthma Allergy. 2019;12:91–4. https://doi.org/10.2147/JAA.S189523 .
doi: 10.2147/JAA.S189523 pubmed: 31040706 pmcid: 6452790
Hutchison AA, Leclerc F, Nève V, Jane Pillow J, Robinson PD. The respiratory system. In: Pediatric and neonatal mechanical ventilation: from basics to clinical practice. 2015. p. 55–112. https://doi.org/10.1007/978-3-642-01219-8_4 .
White DE, Bartley J, Nates RJ. Model demonstrates functional purpose of the nasal cycle. Biomed Eng Online. 2015. https://doi.org/10.1186/S12938-015-0034-4 .
doi: 10.1186/S12938-015-0034-4 pubmed: 25907572 pmcid: 4416271
Crisler R, Johnston NA, Sivula C, Budelsky CL. Functional anatomy and physiology. Lab Rat. 2020. https://doi.org/10.1016/B978-0-12-814338-4.00004-0 .
doi: 10.1016/B978-0-12-814338-4.00004-0
Ullah I, Chung K, Beloor J, Lee SK, Kumar P. A positioning device for the placement of mice during intranasal siRNA delivery to the central nervous system. JoVE (J Vis Exp). 2019;2019(150): e59201. https://doi.org/10.3791/59201 .
doi: 10.3791/59201
Hanson LR, Fine JM, Svitak AL, Faltesek KA. Intranasal administration of CNS therapeutics to awake mice. J Vis Exp. 2013. https://doi.org/10.3791/4440 .
doi: 10.3791/4440 pubmed: 24300078 pmcid: 3965342
Piazza JE, et al. A novel intranasal spray device for the administration of nanoparticles to rodents. J Med Devices Trans ASME. 2015. https://doi.org/10.1115/1.4029907/376773 .
doi: 10.1115/1.4029907/376773
Ehrick JD, et al. Considerations for the development of nasal dosage forms. Sterile Prod Dev. 2013;6:99. https://doi.org/10.1007/978-1-4614-7978-9_5 .
doi: 10.1007/978-1-4614-7978-9_5
Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1–2):1–24. https://doi.org/10.1016/J.IJPHARM.2007.03.025 .
doi: 10.1016/J.IJPHARM.2007.03.025 pubmed: 17475423
Benowitz NL, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192(192):29. https://doi.org/10.1007/978-3-540-69248-5_2 .
doi: 10.1007/978-3-540-69248-5_2
Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov. 2019;19(4):277–89. https://doi.org/10.1038/s41573-019-0053-0 .
doi: 10.1038/s41573-019-0053-0 pubmed: 31848464
Humphries LK, Eiland LS. Treatment of acute seizures: is intranasal midazolam a viable option? J Pediatr Pharmacol Ther JPPT. 2013;18(2):79. https://doi.org/10.5863/1551-6776-18.2.79 .
doi: 10.5863/1551-6776-18.2.79 pubmed: 23798902
Rabinowicz AL, Carrazana E, Maggio ET. Improvement of intranasal drug delivery with Intravail® alkylsaccharide excipient as a mucosal absorption enhancer aiding in the treatment of conditions of the central nervous system. Drugs R D. 2021;21(4):361. https://doi.org/10.1007/S40268-021-00360-5 .
doi: 10.1007/S40268-021-00360-5 pubmed: 34435339 pmcid: 8602465
Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clin Pharmacokinet. 2012;42(13):1107–28. https://doi.org/10.2165/00003088-200342130-00003 .
doi: 10.2165/00003088-200342130-00003
Ekelund K, Östh K, Påhlstorp C, Björk E, Ulvenlund S, Johansson F. Correlation between epithelial toxicity and surfactant structure as derived from the effects of polyethyleneoxide surfactants on caco-2 cell monolayers and pig nasal mucosa. J Pharm Sci. 2005;94(4):730–44. https://doi.org/10.1002/JPS.20283 .
doi: 10.1002/JPS.20283 pubmed: 15682384
Turner JH, Wu J, Dorminy CA, Chandra RK. Safety and tolerability of surfactant nasal irrigation. Int Forum Allergy Rhinol. 2017;7(8):809–12. https://doi.org/10.1002/ALR.21959 .
doi: 10.1002/ALR.21959 pubmed: 28558139
Ghadiri M, Young PM, Traini D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics. 2019. https://doi.org/10.3390/PHARMACEUTICS11030113 .
doi: 10.3390/PHARMACEUTICS11030113 pubmed: 30861990 pmcid: 6470976
Rassu G, Ferraro L, Pavan B, Giunchedi P, Gavini E, Dalpiaz A. The role of combined penetration enhancers in nasal microspheres on in vivo drug bioavailability. Pharmaceutics. 2018. https://doi.org/10.3390/PHARMACEUTICS10040206 .
doi: 10.3390/PHARMACEUTICS10040206 pubmed: 30597930 pmcid: 6359056
Ways TMM, Ng KW, Lau WM, Khutoryanskiy VV. Silica nanoparticles in transmucosal drug delivery. Pharm. 2020;12(8):751. https://doi.org/10.3390/PHARMACEUTICS12080751 .
doi: 10.3390/PHARMACEUTICS12080751
Lyseng-Williamson KA. Fentanyl pectin nasal spray: In breakthrough pain in opioid-tolerant adults with cancer. CNS Drugs. 2011;25(6):511–22. https://doi.org/10.2165/11207470-000000000-00000/ .
doi: 10.2165/11207470-000000000-00000/ pubmed: 21649451
Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189–200. https://doi.org/10.1016/J.JCONREL.2014.05.003 .
doi: 10.1016/J.JCONREL.2014.05.003 pubmed: 24818769
Gulati N, Nagaich U, Saraf SA. Intranasal delivery of chitosan nanoparticles for migraine therapy. Sci Pharm. 2013;81(3):843–54. https://doi.org/10.3797/SCIPHARM.1208-18 .
doi: 10.3797/SCIPHARM.1208-18 pubmed: 24106677 pmcid: 3791944
Bernkop-Schnürch A, Schwarz V, Steininger S. Polymers with thiol groups: a new generation of mucoadhesive polymers? Pharm Res. 1999;16(6):876–81. https://doi.org/10.1023/A:1018830204170 .
doi: 10.1023/A:1018830204170 pubmed: 10397608
Bernkop-Schnürch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005;57(11):1569–82. https://doi.org/10.1016/J.ADDR.2005.07.002 .
doi: 10.1016/J.ADDR.2005.07.002 pubmed: 16176846
Rohrer J, Lupo N, Bernkop-Schnürch A. Advanced formulations for intranasal delivery of biologics. Int J Pharm. 2018;553(1–2):8–20. https://doi.org/10.1016/J.IJPHARM.2018.10.029 .
doi: 10.1016/J.IJPHARM.2018.10.029 pubmed: 30316796
Zahir-Jouzdani F, Wolf JD, Atyabi F, Bernkop-Schnürch A. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Drug Deliv. 2018;15(10):1007–19. https://doi.org/10.1080/17425247.2018.1517741 .
doi: 10.1080/17425247.2018.1517741 pubmed: 30173567
Menzel C, Jelkmann M, Laffleur F, Bernkop-Schnürch A. Nasal drug delivery: design of a novel mucoadhesive and in situ gelling polymer. Int J Pharm. 2017;517(1–2):196–202. https://doi.org/10.1016/J.IJPHARM.2016.11.055 .
doi: 10.1016/J.IJPHARM.2016.11.055 pubmed: 27890621
Sharpe SA, et al. Comparison of the flow properties of aqueous suspension corticosteroid nasal sprays under differing sampling conditions. Drug Dev Ind Pharm. 2003;29(9):1005–12. https://doi.org/10.1081/DDC-120025457 .
doi: 10.1081/DDC-120025457 pubmed: 14606664
Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx. 2005;2(1):108. https://doi.org/10.1602/NEURORX.2.1.108 .
doi: 10.1602/NEURORX.2.1.108 pubmed: 15717062 pmcid: 539329
Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013;2013:1–18. https://doi.org/10.1155/2013/238428 .
doi: 10.1155/2013/238428
Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci. 2007;96(3):473–83. https://doi.org/10.1002/JPS.20718 .
doi: 10.1002/JPS.20718 pubmed: 17117404
Sonvico F, et al. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics. 2018;10(1):34. https://doi.org/10.3390/PHARMACEUTICS10010034 .
doi: 10.3390/PHARMACEUTICS10010034 pmcid: 5874847
Poonia N, Kharb R, Lather V, Pandita D. Nanostructured lipid carriers: versatile oral delivery vehicle. Future Sci OA. 2016. https://doi.org/10.4155/FSOA-2016-0030/ASSET/IMAGES/LARGE/FIGURE9.JPEG .
doi: 10.4155/FSOA-2016-0030/ASSET/IMAGES/LARGE/FIGURE9.JPEG pubmed: 28031979 pmcid: 5137980
Smeets NMB, Hoare T. Designing responsive microgels for drug delivery applications. J Polym Sci Part A Polym Chem. 2013;51(14):3027–43. https://doi.org/10.1002/POLA.26707 .
doi: 10.1002/POLA.26707
Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of smart size-, surface-, and shape-switching nanoparticles to improve therapeutic efficacy. Small. 2022;18(6):2104632. https://doi.org/10.1002/SMLL.202104632 .
doi: 10.1002/SMLL.202104632
Brooking J, Davis SS, Illum L. Transport of nanoparticles across the rat nasal mucosa. J Drug Target. 2001;9(4):267–79. https://doi.org/10.3109/10611860108997935 .
doi: 10.3109/10611860108997935 pubmed: 11697030
Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics. 2019. https://doi.org/10.3390/PHARMACEUTICS11100540 .
doi: 10.3390/PHARMACEUTICS11100540 pubmed: 31744218 pmcid: 6920861
Clementino AR, et al. Structure and fate of nanoparticles designed for the nasal delivery of poorly soluble drugs. Mol Pharm. 2021;18(8):3132–46. https://doi.org/10.1021/ACS.MOLPHARMACEUT.1C00366/SUPPL_FILE/MP1C00366_SI_001.PDF .
doi: 10.1021/ACS.MOLPHARMACEUT.1C00366/SUPPL_FILE/MP1C00366_SI_001.PDF pubmed: 34259534 pmcid: 8335725
Popescu R, Ghica MV, Dinu-Pîrvu CE, Anuța V, Lupuliasa D, Popa L. New opportunity to formulate intranasal vaccines and drug delivery systems based on chitosan. Int J Mol Sci. 2020;21(14):1–23. https://doi.org/10.3390/IJMS21145016 .
doi: 10.3390/IJMS21145016
Clementino A, et al. The nasal delivery of nanoencapsulated statins—an approach for brain delivery. Int J Nanomed. 2016;11:6575–90. https://doi.org/10.2147/IJN.S119033 .
doi: 10.2147/IJN.S119033
Mistry A, et al. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J Drug Target. 2009;17(7):543–52. https://doi.org/10.1080/10611860903055470 .
doi: 10.1080/10611860903055470 pubmed: 19530905
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of nanoparticles on brain health: an up to date overview. J Clin Med. 2018. https://doi.org/10.3390/JCM7120490 .
doi: 10.3390/JCM7120490 pubmed: 30486404 pmcid: 6306759
Ul Islam S, Shehzad A, Bilal Ahmed M, Lee YS. Intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules. 2020. https://doi.org/10.3390/MOLECULES25081929 .
doi: 10.3390/MOLECULES25081929
Wong JC, et al. Nanoparticle encapsulated oxytocin increases resistance to induced seizures and restores social behavior in Scn1a-derived epilepsy. Neurobiol Dis. 2021;147: 105147. https://doi.org/10.1016/J.NBD.2020.105147 .
doi: 10.1016/J.NBD.2020.105147 pubmed: 33189882
Malerba F, Paoletti F, Capsoni S, Cattaneo A. Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin Drug Deliv. 2011;8(10):1277–96. https://doi.org/10.1517/17425247.2011.588204 .
doi: 10.1517/17425247.2011.588204 pubmed: 21619468
Meredith ME, Salameh TS, Banks WA. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. AAPS J. 2015;17(4):780–7. https://doi.org/10.1208/S12248-015-9719-7/ .
doi: 10.1208/S12248-015-9719-7/ pubmed: 25801717 pmcid: 4476983
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res. 2016;39(9):1181–92. https://doi.org/10.1007/S12272-016-0782-0/ .
doi: 10.1007/S12272-016-0782-0/ pubmed: 27352214
Zaman M, Chandrudu S, Toth I. Strategies for intranasal delivery of vaccines. Drug Deliv Transl Res. 2013;3(1):100–9. https://doi.org/10.1007/S13346-012-0085-Z/ .
doi: 10.1007/S13346-012-0085-Z/ pubmed: 23316448
Bahadur S, Sachan N, Harwansh RK, Deshmukh R. Nanoparticlized system: promising approach for the management of Alzheimer’s disease through intranasal delivery. Curr Pharm Des. 2020;26(12):1331–44. https://doi.org/10.2174/1381612826666200311131658 .
doi: 10.2174/1381612826666200311131658 pubmed: 32160843
Pandey M, et al. Nanoparticles based intranasal delivery of drug to treat Alzheimer’s disease: a recent update. CNS Neurol Disord Drug Targets. 2020;19(9):648–62. https://doi.org/10.2174/1871527319999200819095620 .
doi: 10.2174/1871527319999200819095620 pubmed: 32819251
Costa C, Moreira JN, Amaral MH, Sousa Lobo JM, Silva AC. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release. 2019;295:187–200. https://doi.org/10.1016/J.JCONREL.2018.12.049 .
doi: 10.1016/J.JCONREL.2018.12.049 pubmed: 30610952
Gomez D, Martinez JA, Hanson LR, Frey WH, Toth CC. Intranasal treatment of neurodegenerative diseases and stroke. Front Biosci (Schol Ed). 2012;4(1):74–89. https://doi.org/10.2741/252 .
doi: 10.2741/252
Hanson LR, Frey WH. Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9(Suppl 3):S5. https://doi.org/10.1186/1471-2202-9-S3-S5 .
doi: 10.1186/1471-2202-9-S3-S5 pubmed: 19091002 pmcid: 2604883
Sharma D, et al. Nose-to-brain delivery of PLGA-diazepam nanoparticles. AAPS PharmSciTech. 2015;16(5):1108–21. https://doi.org/10.1208/S12249-015-0294-0/FIGURES/9 .
doi: 10.1208/S12249-015-0294-0/FIGURES/9 pubmed: 25698083 pmcid: 4674633
Piazza J, et al. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly(d, l)-lactic-co-glycolic acid (PEG–PLGA) nanoparticles for the treatment of schizophrenia. Eur J Pharm Biopharm. 2014;87(1):30–9. https://doi.org/10.1016/J.EJPB.2014.02.007 .
doi: 10.1016/J.EJPB.2014.02.007 pubmed: 24560967
Campea MA, Majcher MJ, Lofts A, Hoare T. A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications. Adv Funct Mater. 2021;31(33):2102355. https://doi.org/10.1002/ADFM.202102355 .
doi: 10.1002/ADFM.202102355
Wang JTW, et al. Enhanced delivery of neuroactive drugs via nasal delivery with a self-healing supramolecular gel. Adv Sci. 2021;8(14):2101058. https://doi.org/10.1002/ADVS.202101058 .
doi: 10.1002/ADVS.202101058
Majcher MJ, et al. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J Control Release. 2020;330:738–52. https://doi.org/10.1016/j.jconrel.2020.12.050 .
doi: 10.1016/j.jconrel.2020.12.050 pubmed: 33383097
Quintana DS, Smerud KT, Andreassen OA, Djupesland PG. Evidence for intranasal oxytocin delivery to the brain: recent advances and future perspectives. Ther Deliv. 2018;9(7):515–25. https://doi.org/10.4155/TDE-2018-0002/ .
doi: 10.4155/TDE-2018-0002/ pubmed: 29943688
Dave R, Randhawa G, Kim D, Simpson M, Hoare T. Microgels and nanogels for the delivery of poorly water-soluble drugs. Mol Pharm. 2022. https://doi.org/10.1021/ACS.MOLPHARMACEUT.1C00967 .
doi: 10.1021/ACS.MOLPHARMACEUT.1C00967 pubmed: 35319212
Picone P, et al. Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials. 2016;80:179–94. https://doi.org/10.1016/J.BIOMATERIALS.2015.11.057 .
doi: 10.1016/J.BIOMATERIALS.2015.11.057 pubmed: 26708643
Picone P, et al. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J Control Release. 2018;270:23–36. https://doi.org/10.1016/J.JCONREL.2017.11.040 .
doi: 10.1016/J.JCONREL.2017.11.040 pubmed: 29196041
Masjedi M, Azadi A, Heidari R, Mohammadi-Samani S. Brain targeted delivery of sumatriptan succinate loaded chitosan nanoparticles: preparation, in vitro characterization, and (neuro-)pharmacokinetic evaluations. J Drug Deliv Sci Technol. 2021;61: 102179. https://doi.org/10.1016/J.JDDST.2020.102179 .
doi: 10.1016/J.JDDST.2020.102179
Youssef NAHA, Kassem AA, Farid RM, Ismail FA, El-Massik MAE, Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: preparation, characterization and in vivo evaluation. Int J Pharm. 2018;548(1):609–24. https://doi.org/10.1016/J.IJPHARM.2018.07.014 .
doi: 10.1016/J.IJPHARM.2018.07.014 pubmed: 30033394
Hasan N, et al. Intranasal delivery of naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int J Pharm. 2021;599: 120428. https://doi.org/10.1016/J.IJPHARM.2021.120428 .
doi: 10.1016/J.IJPHARM.2021.120428 pubmed: 33662465
Bonferoni MC, et al. Nanoemulsions for ‘nose-to-brain’ drug delivery. Pharmaceutics. 2019. https://doi.org/10.3390/PHARMACEUTICS11020084 .
doi: 10.3390/PHARMACEUTICS11020084 pubmed: 31739619 pmcid: 6920942
Handa M, et al. Therapeutic potential of nanoemulsions as feasible wagons for targeting Alzheimer’s disease. Drug Discov Today. 2021;26(12):2881–8. https://doi.org/10.1016/J.DRUDIS.2021.07.020 .
doi: 10.1016/J.DRUDIS.2021.07.020 pubmed: 34332094
Bahadur S, Pardhi DM, Rautio J, Rosenholm JM, Pathak K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for CNS disorders. Pharm. 2020;12(12):1230. https://doi.org/10.3390/PHARMACEUTICS12121230 .
doi: 10.3390/PHARMACEUTICS12121230
Abdou EM, Kandil SM, Miniawy HMFE. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int J Pharm. 2017;529(1–2):667–77. https://doi.org/10.1016/J.IJPHARM.2017.07.030 .
doi: 10.1016/J.IJPHARM.2017.07.030 pubmed: 28729175
Jain R, Nabar S, Dandekar P, Vandana P. Micellar nanocarriers: potential nose-to-brain delivery of zolmitriptan as novel migraine therapy. Pharm Res. 2010;27(4):655–64. https://doi.org/10.1007/S11095-009-0041-X/ .
doi: 10.1007/S11095-009-0041-X/ pubmed: 20151180
Hoekman JD, Srivastava P, Ho RJY. Aerosol stable peptide-coated liposome nanoparticles: a proof-of-concept study with opioid fentanyl in enhancing analgesic effects and reducing plasma drug exposure. J Pharm Sci. 2014;103(8):2231. https://doi.org/10.1002/JPS.24022 .
doi: 10.1002/JPS.24022 pubmed: 24909764 pmcid: 4115018
Abd-Elal RMA, Shamma RN, Rashed HM, Bendas ER. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Delivery. 2016;23(9):3374–86. https://doi.org/10.1080/10717544.2016.1183721 .
doi: 10.1080/10717544.2016.1183721 pubmed: 27128792
Assistant Professor BK. Lipid nano particulate drug delivery: an overview of the emerging trend. Pharma Innov J. 2018;7(7):779–89. [Online]. www.thepharmajournal.com . Accessed 24 Jan 2022.
Maggio ET. Intravail
doi: 10.1517/17425247.3.4.529 pubmed: 16822227
Ganesan P, Narayanasamy D. Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm. 2017;6:37–56. https://doi.org/10.1016/J.SCP.2017.07.002 .
doi: 10.1016/J.SCP.2017.07.002
Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: a current overview of in vivo studies. Acta Pharm Sin B. 2021;11(4):925–40. https://doi.org/10.1016/J.APSB.2021.02.012 .
doi: 10.1016/J.APSB.2021.02.012 pubmed: 33996407 pmcid: 8105874
Nair SC, Vinayan KP, Mangalathillam S. Nose to brain delivery of phenytoin sodium loaded nano lipid carriers: formulation, drug release, permeation and in vivo pharmacokinetic studies. Pharm. 2021;13(10):1640. https://doi.org/10.3390/PHARMACEUTICS13101640 .
doi: 10.3390/PHARMACEUTICS13101640
Shimoda A, et al. Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery. Colloids Surfaces B Biointerfaces. 2012;99:38–44. https://doi.org/10.1016/J.COLSURFB.2011.09.025 .
doi: 10.1016/J.COLSURFB.2011.09.025 pubmed: 21996463
Hasegawa U, et al. Raspberry-like assembly of cross-linked nanogels for protein delivery. J Control Release. 2009;140(3):312–7. https://doi.org/10.1016/J.JCONREL.2009.06.025 .
doi: 10.1016/J.JCONREL.2009.06.025 pubmed: 19573568
Yuki Y, et al. Characterization and specification of a trivalent protein-based pneumococcal vaccine formulation using an adjuvant-free nanogel nasal delivery system. Mol Pharm. 2021;18(4):1582–92. https://doi.org/10.1021/ACS.MOLPHARMACEUT.0C01003/ .
doi: 10.1021/ACS.MOLPHARMACEUT.0C01003/ pubmed: 33621107
Nakahashi-Ouchida R, et al. A nanogel-based trivalent PspA nasal vaccine protects macaques from intratracheal challenge with pneumococci. Vaccine. 2021;39(25):3353–64. https://doi.org/10.1016/J.VACCINE.2021.04.069 .
doi: 10.1016/J.VACCINE.2021.04.069 pubmed: 34016473
Sawada SI, et al. Nanogel hybrid assembly for exosome intracellular delivery: effects on endocytosis and fusion by exosome surface polymer engineering. Biomater Sci. 2020;8(2):619–30. https://doi.org/10.1039/C9BM01232J .
doi: 10.1039/C9BM01232J pubmed: 31833484
Mendell JR, et al. Single-Dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–22. https://doi.org/10.1056/NEJMOA1706198/ .
doi: 10.1056/NEJMOA1706198/ pubmed: 29091557
Castle MJ, Baltanás FC, Kovacs I, Nagahara AH, Barba D, Tuszynski MH. Postmortem analysis in a clinical trial of AAV2-NGF gene therapy for Alzheimer’s disease identifies a need for improved vector delivery. Hum Gene Ther. 2020;31(7–8):415. https://doi.org/10.1089/HUM.2019.367 .
doi: 10.1089/HUM.2019.367 pubmed: 32126838 pmcid: 7194314
Rafii MS, et al. A phase 1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement. 2014;10(5):571–81. https://doi.org/10.1016/J.JALZ.2013.09.004 .
doi: 10.1016/J.JALZ.2013.09.004 pubmed: 24411134
Belur LR, et al. Intranasal adeno-associated virus mediated gene delivery and expression of human iduronidase in the central nervous system: a noninvasive and effective approach for prevention of neurologic disease in mucopolysaccharidosis type I. Hum Gene Ther. 2017;28(7):576. https://doi.org/10.1089/HUM.2017.187 .
doi: 10.1089/HUM.2017.187 pubmed: 28462595 pmcid: 5549804
Oviedo N, Manuel-Apolinar L, Orozco-Suárez S, Juárez-Cedillo T, Bekker Méndez VC, Tesoro-Cruz E. Intranasal administration of a naked plasmid reached brain cells and expressed green fluorescent protein, a candidate for future gene therapy studies. Arch Med Res. 2017;48(7):616–22. https://doi.org/10.1016/J.ARCMED.2018.03.003 .
doi: 10.1016/J.ARCMED.2018.03.003 pubmed: 29555303
Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36. https://doi.org/10.1182/BLOOD-2013-01-306647 .
doi: 10.1182/BLOOD-2013-01-306647 pubmed: 23596044 pmcid: 3701904
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–94. https://doi.org/10.1038/s41578-021-00358-0 .
doi: 10.1038/s41578-021-00358-0 pubmed: 34394960 pmcid: 8353930
Pena SA, et al. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target. 2020;28(2):111–28. https://doi.org/10.1080/1061186X.2019.1630415 .
doi: 10.1080/1061186X.2019.1630415 pubmed: 31195838
Aly AEE, Harmon BT, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL. Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson’s disease. Mol Neurobiol. 2019;56(1):688–701. https://doi.org/10.1007/S12035-018-1109-6/FIGURES/7 .
doi: 10.1007/S12035-018-1109-6/FIGURES/7 pubmed: 29779176
Tanaka H, et al. In vivo introduction of mRNA encapsulated in lipid nanoparticles to brain neuronal cells and astrocytes via intracerebroventricular administration. Mol Pharm. 2018;15(5):2060–7. https://doi.org/10.1021/acs.molpharmaceut.7b01084 .
doi: 10.1021/acs.molpharmaceut.7b01084 pubmed: 29638135
Mohamad SA, Badawi AM, Mansour HF. Insulin fast-dissolving film for intranasal delivery via olfactory region, a promising approach for the treatment of anosmia in COVID-19 patients: design, in-vitro characterization and clinical evaluation. Int J Pharm. 2021;601: 120600. https://doi.org/10.1016/J.IJPHARM.2021.120600 .
doi: 10.1016/J.IJPHARM.2021.120600 pubmed: 33862126
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: an update of literature. Pharm Dev Technol. 2021;26(8):824–45. https://doi.org/10.1080/10837450.2021.1950186 .
doi: 10.1080/10837450.2021.1950186 pubmed: 34218736
Lechner M, et al. Anosmia as a presenting symptom of SARS-CoV-2 infection in healthcare workers—a systematic review of the literature, case series, and recommendations for clinical assessment and management. Rhinology. 2020;58(4):1–9. https://doi.org/10.4193/RHIN20.189 .
doi: 10.4193/RHIN20.189
Longmore J, et al. Differential distribution of 5HT(1D)- and 5HT(1B)-immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new antimigraine drugs. Cephalalgia. 1997;17(8):833–42. https://doi.org/10.1046/j.1468-2982.1997.1708833.x .
doi: 10.1046/j.1468-2982.1997.1708833.x pubmed: 9453271
Dahlöf C, Maassen Van Den Brink A. Dihydroergotamine, ergotamine, methysergide and sumatriptan— basic science in relation to migraine treatment. Headache. 2012;52(4):707–14. https://doi.org/10.1111/J.1526-4610.2012.02124.X .
doi: 10.1111/J.1526-4610.2012.02124.X pubmed: 22444161
Sullivan HJ, Tursi A, Moore K, Campbell A, Floyd C, Wu C. Binding Interactions of ergotamine and dihydroergotamine to 5-hydroxytryptamine receptor 1B (5-HT 1b) using molecular dynamics simulations and dynamic network analysis. J Chem Inf Model. 2020;60(3):1749–65. https://doi.org/10.1021/ACS.JCIM.9B01082 .
doi: 10.1021/ACS.JCIM.9B01082 pubmed: 32078320
Lee A, Kuo B. Metoclopramide in the treatment of diabetic gastroparesis. Expert Rev Endocrinol Metab. 2010;5(5):653. https://doi.org/10.1586/eem.10.41 .
doi: 10.1586/eem.10.41 pubmed: 21278804 pmcid: 3027056
Macario A, Lipman AG. Ketorolac in the era of cyclo-oxygenase-2 selective nonsteroidal anti-inflammatory drugs: a systematic review of efficacy, side effects, and regulatory issues. Pain Med. 2001;2(4):336–51. https://doi.org/10.1046/J.1526-4637.2001.01043.X .
doi: 10.1046/J.1526-4637.2001.01043.X pubmed: 15102238
Buckley MMT, Brogden RN. Ketorolac. Drugs. 2012;39(1):86–109. https://doi.org/10.2165/00003495-199039010-00008 .
doi: 10.2165/00003495-199039010-00008
Lutz PE, Almeida D, Filliol D, Jollant F, Kieffer BL, Turecki G. Increased functional coupling of the mu opioid receptor in the anterior insula of depressed individuals. Neuropsychopharmacology. 2021;46(5):920–7. https://doi.org/10.1038/s41386-021-00974-y .
doi: 10.1038/s41386-021-00974-y pubmed: 33531622 pmcid: 8115105
Nicholson MW, et al. Diazepam-induced loss of inhibitory synapses mediated by PLCδ/Ca
doi: 10.1038/s41380-018-0100-y pubmed: 29904150 pmcid: 6232101
Edwards Z, Preuss CV. GABA receptor positive allosteric modulators. StatPearls. 2021. [Online]. https://www.ncbi.nlm.nih.gov/books/NBK554443/ . Accessed24 Jan 2022.
Lingamchetty TN, Hosseini SA, Saadabadi A. Midazolam. xPharm Compr Pharmacol Ref. 2021. https://doi.org/10.1016/B978-008055232-3.62185-3 .
doi: 10.1016/B978-008055232-3.62185-3
Spina SP, Ensom MHH. Clinical pharmacokinetic monitoring of midazolam in critically ill patients. Pharmacotherapy. 2007;27(3):389–98. https://doi.org/10.1592/PHCO.27.3.389 .
doi: 10.1592/PHCO.27.3.389 pubmed: 17316150
Blondal T, Gudmundsson LJ, Olafsdottir I, Gustavsson G, Westin A, Stapleton J. Nicotine nasal spray with nicotine patch for smoking cessation: randomised trial with six year follow up. BMJ Br Med J. 1999;318(7179):285. https://doi.org/10.1136/BMJ.318.7179.285 .
doi: 10.1136/BMJ.318.7179.285
Perkins KA, Grobe JE, D’Amico D, Fonte C, Wilson AS, Stiller RL. Low-dose nicotine nasal spray use and effects during initial smoking cessation. Exp Clin Psychopharmacol. 1996;4(2):157–65. https://doi.org/10.1037/1064-1297.4.2.157 .
doi: 10.1037/1064-1297.4.2.157
Schneider NG, Lunell E, Olmstead RE, Fagerström KO. Clinical pharmacokinetics of nasal nicotine delivery. A review and comparison to other nicotine systems. Clin Pharmacokinet. 1996;31(1):65–80. https://doi.org/10.2165/00003088-199631010-00005 .
doi: 10.2165/00003088-199631010-00005 pubmed: 8827400
Lee JH, Jahrling JB, Denner L, Dineley KT. Targeting Insulin for Alzheimer’s disease: mechanisms, status and potential directions. J Alzheimers Dis. 2018;64(s1):S427–53. https://doi.org/10.3233/JAD-179923 .
doi: 10.3233/JAD-179923 pubmed: 29710715
Novak P, Maldonado DAP, Novak V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: a double-blinded placebo-controlled pilot study. PLoS ONE. 2019. https://doi.org/10.1371/JOURNAL.PONE.0214364 .
doi: 10.1371/JOURNAL.PONE.0214364 pubmed: 31790417 pmcid: 6886840
Bernaerts S, Boets B, Steyaert J, Wenderoth N, Alaerts K. Oxytocin treatment attenuates amygdala activity in autism: a treatment-mechanism study with long-term follow-up. Transl Psychiatry. 2020;10(1):1–12. https://doi.org/10.1038/s41398-020-01069-w .
doi: 10.1038/s41398-020-01069-w
Hollander E, et al. Intranasal oxytocin versus placebo for hyperphagia and repetitive behaviors in children with Prader–Willi syndrome: a randomized controlled pilot trial. J Psychiatr Res. 2021;137:643–51. https://doi.org/10.1016/J.JPSYCHIRES.2020.11.006 .
doi: 10.1016/J.JPSYCHIRES.2020.11.006 pubmed: 33190843
Stauffer CS, Musinipally V, Suen A, Lynch KL, Shapiro B, Woolley JD. A two-week pilot study of intranasal oxytocin for cocaine-dependent individuals receiving methadone maintenance treatment for opioid use disorder. Addict Res Theory. 2016;24(6):490. https://doi.org/10.3109/16066359.2016.1173682 .
doi: 10.3109/16066359.2016.1173682 pubmed: 28503120 pmcid: 5424696
Mischley LK, Lau RC, Shankland EG, Wilbur TK, Padowski JM. Phase IIb study of intranasal glutathione in Parkinson’s disease. J Parkinsons Dis. 2017;7(2):289. https://doi.org/10.3233/JPD-161040 .
doi: 10.3233/JPD-161040 pubmed: 28436395 pmcid: 5438472
Perez-Ruixo C, et al. Population pharmacokinetics of esketamine nasal spray and its metabolite noresketamine in healthy subjects and patients with treatment-resistant depression. Clin Pharmacokinet. 2021;60(4):501–16. https://doi.org/10.1007/S40262-020-00953-4 .
doi: 10.1007/S40262-020-00953-4 pubmed: 33128208
Bahr R, Lopez A, Rey JA. Intranasal esketamine (SpravatoTM) for use in treatment-resistant depression in conjunction with an oral antidepressant. Pharm Ther. 2019;44(6):340. Accessed 24 Jan 2022. [Online]. /pmc/articles/PMC6534172/.
Fuseau E, Petricoul O, Moore KH, Barrow A, Ibbotson T. Clinical pharmacokinetics of intranasal sumatriptan. Clin Pharmacokinet. 2002;41(11):801–11. https://doi.org/10.2165/00003088-200241110-00002 .
doi: 10.2165/00003088-200241110-00002 pubmed: 12190330
Quadir M, Zia H, Needham TE. Development and evaluation of nasal formulations of ketorolac. Drug Deliv. 2000;7(4):223–9. https://doi.org/10.1080/107175400455155 .
doi: 10.1080/107175400455155 pubmed: 11195429
Tylleskar I, Skulberg AK, Nilsen T, Skarra S. Naloxone nasal spray—bioavailability and absorption pattern in a phase 1 study. Tidsskr Nor Laegeforen. 2019. https://doi.org/10.4045/TIDSSKR.19.0162 .
doi: 10.4045/TIDSSKR.19.0162 pubmed: 31556537
Hogan RE, Gidal BE, Koplowitz B, Koplowitz LP, Lowenthal RE, Carrazana E. Bioavailability and safety of diazepam intranasal solution compared to oral and rectal diazepam in healthy volunteers. Epilepsia. 2020;61(3):455. https://doi.org/10.1111/EPI.16449 .
doi: 10.1111/EPI.16449 pubmed: 32065672 pmcid: 7154760
Johansson CJ, Olsson P, Bende M, Carlsson T, Gunnarsson PO. Absolute bioavailability of nicotine applied to different nasal regions. Eur J Clin Pharmacol. 1991;41(6):585–8. https://doi.org/10.1007/BF00314989 .
doi: 10.1007/BF00314989 pubmed: 1815971
Nau J, Wyatt DJ, Rollema H, Crean CS. A phase I, open-label, randomized, 2-way crossover study to evaluate the relative bioavailability of intranasal and oral varenicline. Clin Ther. 2021;43(9):1595–607. https://doi.org/10.1016/J.CLINTHERA.2021.07.020 .
doi: 10.1016/J.CLINTHERA.2021.07.020 pubmed: 34456060
Lougheed WD, Fischer U, Perlman K, Albisser AM. A physiological solvent for crystalline insulin. Diabetologia. 1981;20(1):51–3. https://doi.org/10.1007/BF00253817 .
doi: 10.1007/BF00253817 pubmed: 7009285

Auteurs

Andrew Lofts (A)

School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON, L8S 4L8, Canada.

Fahed Abu-Hijleh (F)

Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON, L8S 4L8, Canada.

Nicolette Rigg (N)

Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON, L8S 4L8, Canada.

Ram K Mishra (RK)

School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON, L8S 4L8, Canada.
Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON, L8S 4L8, Canada.

Todd Hoare (T)

School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON, L8S 4L8, Canada. hoaretr@mcmaster.ca.
Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON, L8S 4L8, Canada. hoaretr@mcmaster.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH