Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix.


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
06 2022
Historique:
received: 23 09 2021
accepted: 10 05 2022
entrez: 27 6 2022
pubmed: 28 6 2022
medline: 30 6 2022
Statut: ppublish

Résumé

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.

Identifiants

pubmed: 35760868
doi: 10.1038/s42255-022-00582-0
pii: 10.1038/s42255-022-00582-0
pmc: PMC9236907
doi:

Substances chimiques

Glutamine 0RH81L854J
Collagen 9007-34-5
Proline 9DLQ4CIU6V
Pyrroline Carboxylate Reductases EC 1.5.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

693-710

Subventions

Organisme : Cancer Research UK
ID : A31287
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A18076
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A17196
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A29800
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A23982
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A29799
Pays : United Kingdom

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).
pubmed: 31980749 pmcid: 7046529 doi: 10.1038/s41568-019-0238-1
Santi, A., Kugeratski, F. G. & Zanivan, S. Cancer associated fibroblasts: the architects of stroma remodelling. Proteomics 18, e1700167 (2017).
doi: 10.1002/pmic.201700167
Wu, S. Z. et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 39, e104063 (2020).
pubmed: 32790115 pmcid: 7527929 doi: 10.15252/embj.2019104063
Pearce, O. M. T. et al. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 8, 304–319 (2018).
pubmed: 29196464 doi: 10.1158/2159-8290.CD-17-0284
Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527 (2008).
pubmed: 18438415 doi: 10.1038/nm1764
Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).
pubmed: 32434947 doi: 10.1158/2159-8290.CD-19-1384
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).
pubmed: 15882617 doi: 10.1016/j.cell.2005.02.034
Hernandez-Fernaud, J. R. et al. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity. Nat. Commun. 8, 14206 (2017).
pubmed: 28198360 pmcid: 5316871 doi: 10.1038/ncomms14206
Kojima, Y. et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl Acad. Sci. USA 107, 20009–20014 (2010).
pubmed: 21041659 pmcid: 2993333 doi: 10.1073/pnas.1013805107
Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).
pubmed: 24856586 pmcid: 4180632 doi: 10.1016/j.ccr.2014.04.005
Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).
pubmed: 24856585 pmcid: 4096698 doi: 10.1016/j.ccr.2014.04.021
Kai, F., Drain, A. P. & Weaver, V. M. The extracellular matrix modulates the metastatic journey. Dev. Cell 49, 332–346 (2019).
pubmed: 31063753 pmcid: 6527347 doi: 10.1016/j.devcel.2019.03.026
Alexander, J. & Cukierman, E. Stromal dynamic reciprocity in cancer: intricacies of fibroblastic-ECM interactions. Curr. Opin. Cell Biol. 42, 80–93 (2016).
pubmed: 27214794 pmcid: 5064819 doi: 10.1016/j.ceb.2016.05.002
Barcus, C. E. et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res 19, 9 (2017).
pubmed: 28103936 pmcid: 5244528 doi: 10.1186/s13058-017-0801-1
Provenzano, P. P. et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11 (2008).
pubmed: 18442412 pmcid: 2386807 doi: 10.1186/1741-7015-6-11
Iyengar, P. et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest. 115, 1163–1176 (2005).
pubmed: 15841211 pmcid: 1077173 doi: 10.1172/JCI23424
Liu, J. et al. TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 109, 16618–16623 (2012).
pubmed: 22996328 pmcid: 3478596 doi: 10.1073/pnas.1117610109
Diop-Frimpong, B., Chauhan, V. P., Krane, S., Boucher, Y. & Jain, R. K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl Acad. Sci. USA 108, 2909–2914 (2011).
pubmed: 21282607 pmcid: 3041115 doi: 10.1073/pnas.1018892108
Polydorou, C., Mpekris, F., Papageorgis, P., Voutouri, C. & Stylianopoulos, T. Pirfenidone normalizes the tumor microenvironment to improve chemotherapy. Oncotarget 8, 24506–24517 (2017).
pubmed: 28445938 pmcid: 5421866 doi: 10.18632/oncotarget.15534
Chen, Y. et al. Type I collagen deletion in alphaSMA(+) myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 39, 548–565 e546 (2021).
pubmed: 33667385 pmcid: 8423173 doi: 10.1016/j.ccell.2021.02.007
Jiang, H. et al. Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. J. Clin. Invest. 130, 4704–4709 (2020).
pubmed: 32749238 pmcid: 7456216 doi: 10.1172/JCI136760
Guido, C. et al. Metabolic reprogramming of cancer-associated fibroblasts by TGF-beta drives tumor growth: connecting TGF-beta signaling with "Warburg-like" cancer metabolism and L-lactate production. Cell Cycle 11, 3019–3035 (2012).
pubmed: 22874531 pmcid: 3442913 doi: 10.4161/cc.21384
Bertero, T. et al. Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29, 124–140 e110 (2019).
pubmed: 30293773 doi: 10.1016/j.cmet.2018.09.012
Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).
pubmed: 27509858 pmcid: 5228623 doi: 10.1038/nature19084
Olivares, O. et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031 (2017).
pubmed: 28685754 pmcid: 5504351 doi: 10.1038/ncomms16031
Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteom. 11, M111.014647 (2012).
doi: 10.1074/mcp.M111.014647
Krane, S. M. The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 35, 703–710 (2008).
pubmed: 18431533 doi: 10.1007/s00726-008-0073-2
Hu, M. et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13, 394–406 (2008).
pubmed: 18455123 pmcid: 3705908 doi: 10.1016/j.ccr.2008.03.007
Psychogios, N. et al. The human serum metabolome. PLoS ONE 6, e16957 (2011).
pubmed: 21359215 pmcid: 3040193 doi: 10.1371/journal.pone.0016957
Tran, D. H. et al. Mitochondrial NADP(+) is essential for proline biosynthesis during cell growth. Nat. Metab. 3, 571–585 (2021).
pubmed: 33833463 pmcid: 9210447 doi: 10.1038/s42255-021-00374-y
Saleh, S. M. I. et al. Identification of interacting stromal axes in triple-negative breast cancer. Cancer Res. 77, 4673–4683 (2017).
pubmed: 28652250 doi: 10.1158/0008-5472.CAN-16-3427
Ma, X. J., Dahiya, S., Richardson, E., Erlander, M. & Sgroi, D. C. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11, R7 (2009).
pubmed: 19187537 pmcid: 2687710 doi: 10.1186/bcr2222
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6, pl1 (2013).
pubmed: 23550210 pmcid: 4160307 doi: 10.1126/scisignal.2004088
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).
pubmed: 22522925 pmcid: 3440846 doi: 10.1038/nature10983
Milne, K. et al. A fragment-like approach to PYCR1 inhibition. Bioorg. Med. Chem. Lett. 29, 2626–2631 (2019).
pubmed: 31362921 doi: 10.1016/j.bmcl.2019.07.047
Aper, S. J. et al. Colorful protein-based fluorescent probes for collagen imaging. PLoS ONE 9, e114983 (2014).
pubmed: 25490719 pmcid: 4260915 doi: 10.1371/journal.pone.0114983
Loayza-Puch, F. et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature 530, 490–494 (2016).
pubmed: 26878238 doi: 10.1038/nature16982
Mulholland, T. et al. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Sci. Rep. 8, 14672 (2018).
pubmed: 30279484 pmcid: 6168499 doi: 10.1038/s41598-018-33055-0
Tian, C. et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl Acad. Sci. USA 116, 19609–19618 (2019).
pubmed: 31484774 pmcid: 6765243 doi: 10.1073/pnas.1908626116
Campbell, S. L. & Wellen, K. E. Metabolic signaling to the nucleus in cancer. Mol. Cell 71, 398–408 (2018).
pubmed: 30075141 doi: 10.1016/j.molcel.2018.07.015
Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).
pubmed: 26039447 doi: 10.1016/j.cmet.2015.05.014
Richters, A. & Koehler, A. N. Epigenetic modulation using small molecules – targeting histone acetyltransferases in disease. Curr. Med. Chem. 24, 4121–4150 (2017).
pubmed: 28240169 doi: 10.2174/0929867324666170223153115
Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).
pubmed: 21160473 doi: 10.1038/nature09692
Lee, J. V. et al. Acetyl-CoA promotes glioblastoma cell adhesion and migration through Ca(2+)-NFAT signaling. Genes Dev. 32, 497–511 (2018).
pubmed: 29674394 pmcid: 5959234 doi: 10.1101/gad.311027.117
Ding, N. et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153, 601–613 (2013).
pubmed: 23622244 pmcid: 3673534 doi: 10.1016/j.cell.2013.03.028
Raisner, R. et al. Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation. Cell Rep. 24, 1722–1729 (2018).
pubmed: 30110629 doi: 10.1016/j.celrep.2018.07.041
Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).
pubmed: 19461003 pmcid: 2746744 doi: 10.1126/science.1164097
Sutendra, G. et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84–97 (2014).
pubmed: 24995980 doi: 10.1016/j.cell.2014.04.046
Shi, G. & McQuibban, G. A. The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep. 18, 1458–1472 (2017).
pubmed: 28178523 doi: 10.1016/j.celrep.2017.01.029
Eckert, M. A. et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 569, 723–728 (2019).
pubmed: 31043742 pmcid: 6690743 doi: 10.1038/s41586-019-1173-8
Bellon, G., Monboisse, J. C., Randoux, A. & Borel, J. P. Effects of preformed proline and proline amino acid precursors (including glutamine) on collagen synthesis in human fibroblast cultures. Biochim. Biophys. Acta 930, 39–47 (1987).
pubmed: 2887211 doi: 10.1016/0167-4889(87)90153-4
Schwörer, S. et al. Proline biosynthesis is a vent for TGFbeta-induced mitochondrial redox stress. EMBO J. 39, e103334 (2020).
pubmed: 32134147 pmcid: 7156964 doi: 10.15252/embj.2019103334
Luengo, A. et al. Increased demand for NAD(+) relative to ATP drives aerobic glycolysis. Mol. Cell 81, 691–707 e696 (2021).
pubmed: 33382985 doi: 10.1016/j.molcel.2020.12.012
Guo, L. et al. Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nat. Commun. 10, 845 (2019).
pubmed: 30783087 pmcid: 6381112 doi: 10.1038/s41467-019-08772-3
Guo, L. et al. PINCH-1 regulates mitochondrial dynamics to promote proline synthesis and tumor growth. Nat. Commun. 11, 4913 (2020).
pubmed: 33004813 pmcid: 7529891 doi: 10.1038/s41467-020-18753-6
Williams, L. M. et al. Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. Proc. Natl Acad. Sci. USA 117, 20753–20763 (2020).
pubmed: 32759223 pmcid: 7456151 doi: 10.1073/pnas.2004281117
Schwörer, S. et al. Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment. Nat. Metab. 3, 1484–1499 (2021).
pubmed: 34764457 pmcid: 8606002 doi: 10.1038/s42255-021-00480-x
Koukourakis, M. I., Giatromanolaki, A., Bougioukas, G. & Sivridis, E. Lung cancer: a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma. Cancer Biol. Ther. 6, 1476–1479 (2007).
pubmed: 17881895
Koukourakis, M. I. et al. Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia 7, 1–6 (2005).
pubmed: 15736311 pmcid: 1490315 doi: 10.1593/neo.04373
D’Aniello, C., Patriarca, E. J., Phang, J. M. & Minchiotti, G. Proline metabolism in tumor growth and metastatic progression. Front Oncol. 10, 776 (2020).
pubmed: 32500033 pmcid: 7243120 doi: 10.3389/fonc.2020.00776
Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5, 3128 (2014).
pubmed: 24451681 doi: 10.1038/ncomms4128
Wirbel, J., Cutillas, P. & Saez-Rodriguez, J. Phosphoproteomics-based profiling of kinase activities in cancer cells. Methods Mol. Biol. 1711, 103–132 (2018).
pubmed: 29344887 doi: 10.1007/978-1-4939-7493-1_6
Casado, P. et al. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci. Signal 6, rs6 (2013).
pubmed: 23532336 doi: 10.1126/scisignal.2003573
Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846–1847 (2007).
pubmed: 17496320 doi: 10.1093/bioinformatics/btm254
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Rhodes, D. R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).
pubmed: 15068665 pmcid: 1635162 doi: 10.1016/S1476-5586(04)80047-2
Vizcaino, J. A. et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013).
pubmed: 23203882 doi: 10.1093/nar/gks1262

Auteurs

Emily J Kay (EJ)

Cancer Research UK Beatson Institute, Glasgow, UK.
Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.

Karla Paterson (K)

Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow, UK.

Carla Riera-Domingo (C)

Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium.
Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium.

David Sumpton (D)

Cancer Research UK Beatson Institute, Glasgow, UK.

J Henry M Däbritz (JHM)

Cancer Research UK Beatson Institute, Glasgow, UK.

Saverio Tardito (S)

Cancer Research UK Beatson Institute, Glasgow, UK.
Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.

Claudia Boldrini (C)

Cancer Research UK Beatson Institute, Glasgow, UK.

Juan R Hernandez-Fernaud (JR)

Cancer Research UK Beatson Institute, Glasgow, UK.

Dimitris Athineos (D)

Cancer Research UK Beatson Institute, Glasgow, UK.

Sandeep Dhayade (S)

Cancer Research UK Beatson Institute, Glasgow, UK.

Ekaterina Stepanova (E)

Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Enio Gjerga (E)

Heidelberg University, Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany.
RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany.

Lisa J Neilson (LJ)

Cancer Research UK Beatson Institute, Glasgow, UK.

Sergio Lilla (S)

Cancer Research UK Beatson Institute, Glasgow, UK.

Ann Hedley (A)

Cancer Research UK Beatson Institute, Glasgow, UK.

Grigorios Koulouras (G)

Cancer Research UK Beatson Institute, Glasgow, UK.

Grace McGregor (G)

Cancer Research UK Beatson Institute, Glasgow, UK.
Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.

Craig Jamieson (C)

Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, UK.

Radia Marie Johnson (RM)

Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.

Morag Park (M)

Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.
Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Department of Medicine, McGill University, Montreal, Quebec, Canada.
Department of Oncology, McGill University, Montreal, Quebec, Canada.

Kristina Kirschner (K)

Cancer Research UK Beatson Institute, Glasgow, UK.
Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.

Crispin Miller (C)

Cancer Research UK Beatson Institute, Glasgow, UK.
Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.

Jurre J Kamphorst (JJ)

Cancer Research UK Beatson Institute, Glasgow, UK.
Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.

Fabricio Loayza-Puch (F)

Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Julio Saez-Rodriguez (J)

Heidelberg University, Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany.
RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany.

Massimiliano Mazzone (M)

Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium.
Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium.

Karen Blyth (K)

Cancer Research UK Beatson Institute, Glasgow, UK.
Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.

Michele Zagnoni (M)

Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow, UK.

Sara Zanivan (S)

Cancer Research UK Beatson Institute, Glasgow, UK. s.zanivan@beatson.gla.ac.uk.
Institute of Cancer Sciences, University of Glasgow, Glasgow, UK. s.zanivan@beatson.gla.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH