Calorie restriction and breast cancer treatment: a mini-review.
Breast cancer treatments
Calorie restriction
Chemotherapy
Immunotherapy
Intermittent fasting
Radiation therapy
Journal
Journal of molecular medicine (Berlin, Germany)
ISSN: 1432-1440
Titre abrégé: J Mol Med (Berl)
Pays: Germany
ID NLM: 9504370
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
29
01
2022
accepted:
10
06
2022
revised:
02
06
2022
pubmed:
28
6
2022
medline:
30
7
2022
entrez:
27
6
2022
Statut:
ppublish
Résumé
Calorie restriction (CR), referred to as a reduction in dietary calorie intake without malnutrition, has been demonstrated to be a safe way to extend longevity of yeast, worms, and laboratory animals, and to decrease the risk factors in age-related diseases including cancer in humans. Pre-clinical studies in animal models demonstrated that CR may enhance the efficacy of chemotherapy, radiation therapy, and immunotherapy during breast cancer treatment. Reduced calorie intake ameliorates risk factors and delays the onset of cancer by altering metabolism and fostering health-enhancing characteristics including increased autophagy and insulin sensitivity, and decreased blood glucose levels, inflammation, angiogenesis, and growth factor signaling. CR is not a common protocol implemented by medical practitioners to the general public due to the lack of substantial clinical studies. Future research and clinical trials are urgently needed to understand fully the biochemical basis of CR or CR mimetics to support its benefits. Here, we present a mini-review of research studies integrating CR as an adjuvant to chemotherapy, radiation therapy, or immunotherapy during breast cancer treatment.
Identifiants
pubmed: 35760911
doi: 10.1007/s00109-022-02226-y
pii: 10.1007/s00109-022-02226-y
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1095-1109Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Siegel R, Miller KD, Fuchs HE, Jemal A (2022) Cancer Statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708
doi: 10.3322/caac.21708
pubmed: 35020204
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A (2021) Breast cancer–epidemiology, risk factors, classification, prognostic markers, and current treatment strategies–an updated review. Cancers 13(17):4287. https://doi.org/10.3390/cancers13174287
doi: 10.3390/cancers13174287
pubmed: 34503097
pmcid: 8428369
Schick J, Ritchie RP, Restini C (2021) Breast cancer therapeutics and biomarkers: past, present, and future approaches. Breast Cancer Basic Clin Res 15:1–19. https://doi.org/10.1177/1178223421995854
doi: 10.1177/1178223421995854
Mutebi M, Anderson BO (2020) Breast cancer treatment: a phased approach to implementation. Cancer 126(S10):2365–2378. https://doi.org/10.1002/cncr.32910
doi: 10.1002/cncr.32910
pubmed: 32348571
De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I (2019) Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients 11(7):1514. https://doi.org/10.3390/nu11071514
doi: 10.3390/nu11071514
pmcid: 6682953
Ibrahim EM, Al-Foheidi MH, Al-Mansour MM (2021) Energy and caloric restriction, and fasting and cancer: a narrative review. Supp Care Cancer 29:2299–2304. https://doi.org/10.1007/s00520-020-05879-y
doi: 10.1007/s00520-020-05879-y
https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf . Last Accessed 1 June 2022
Acosta-Rodríguez VA, de Groot MHM, Rijo-Ferreira F, Green CB, Takahashi JS (2017) Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab 26(1):267-277.e2. https://doi.org/10.1016/j.cmet.2017.06.007
doi: 10.1016/j.cmet.2017.06.007
pubmed: 28683292
pmcid: 5576447
Redman LM, Ravussin E (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14(2):275–287. https://doi.org/10.1089/ars.2010.3253
doi: 10.1089/ars.2010.3253
pubmed: 20518700
pmcid: 3014770
Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19(2):181–192. https://doi.org/10.1016/j.cmet.2013.12.008
doi: 10.1016/j.cmet.2013.12.008
pubmed: 24440038
pmcid: 3946160
Hofer SJ, Carmona-Gutierrez D, Mueller MI, Madeo F (2022) The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med 14(1):e14418. https://doi.org/10.15252/emmm.202114418
doi: 10.15252/emmm.202114418
pubmed: 34779138
Scholtens EL, Krebs JD, Corley BT, Hall RM (2020) Intermittent fasting 5:2 diet: what is the macronutrient and micronutrient intake and composition? Clin Nutr 39(11):3354–3360. https://doi.org/10.1016/j.clnu.2020.02.022
doi: 10.1016/j.clnu.2020.02.022
pubmed: 32199696
Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46–58. https://doi.org/10.1016/j.arr.2016.10.005
doi: 10.1016/j.arr.2016.10.005
pubmed: 27810402
Regmi P, Heilbronn LK (2020) Time-restricted eating: benefits, mechanisms, and challenges in translation. iScience 23(6):101161. https://doi.org/10.1016/j.isci.2020.101161
doi: 10.1016/j.isci.2020.101161
pubmed: 32480126
pmcid: 7262456
Balasubramanian P, DelFavero J, Ungvari A, Papp M, Tarantini A, Price N, de Cabo R, Tarantini S (2020) Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev 64:101189. https://doi.org/10.1016/j.arr.2020.101189
doi: 10.1016/j.arr.2020.101189
pubmed: 32998063
pmcid: 7710623
Longo VD, Di Tano M, Mattson MP, Guidi N (2021) Intermittent and periodic fasting, longevity and disease. Nat Aging 1:47–59. https://doi.org/10.1038/s43587-020-00013-3
doi: 10.1038/s43587-020-00013-3
pubmed: 35310455
pmcid: 8932957
Duregon E, Pomatto-Watson LCD, Bernier M, Price NL, De Cabo R (2021) Intermittent fasting: from calories to time restriction. GeroSci 43:1083–1092. https://doi.org/10.1007/s11357-021-00335-z
doi: 10.1007/s11357-021-00335-z
Bose S, Allen AE, Locasale JW (2020) The molecular link from diet to cancer cell metabolism. Mol Cell 78(6):1034–1044. https://doi.org/10.1016/j.molcel.2020.05.018
doi: 10.1016/j.molcel.2020.05.018
pubmed: 32504556
pmcid: 7305994
Szabo Z, Koczka V, Marosvolgyi T, Szabo E, Frank E, Polyak E, Fekete K, Erdelyi A, Verzar Z, Figler M (2021) Possible biochemical processes underlying the positive health effects of plant-based diets–a narrative review. Nutrients 13(8):2593. https://doi.org/10.3390/nu13082593
doi: 10.3390/nu13082593
pubmed: 34444753
pmcid: 8398942
Hwangbo D-S, Lee H-Y, Abozaid LS, Min K-J (2020) Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients 12(4):1194. https://doi.org/10.3390/nu12041194
doi: 10.3390/nu12041194
pmcid: 7230387
Eriau E, Paillet J, Kroemer G, Pol JG (2021) Metabolic reprogramming by reduced calorie intake or pharmacological caloric restriction mimetics for improved cancer immunotherapy. Cancers (Basel) 13(6):1260. https://doi.org/10.3390/cancers13061260
doi: 10.3390/cancers13061260
Kopeina GS, Senichkin VV, Zhivotovsky B (2017) Caloric restriction - a promising anti-cancer approach: From molecular mechanisms to clinical trials. Biochim Biophys Acta 1867:29–41. https://doi.org/10.1016/j.bbcan.2016.11.002
doi: 10.1016/j.bbcan.2016.11.002
Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. https://doi.org/10.1126/science.1160809
doi: 10.1126/science.1160809
pubmed: 19460998
pmcid: 2849637
Tran Q, Lee H, Kim C, Kong G, Gong N, Kwon SH, Park J, Kim S-H, Park J (2020) Revisiting the Warburg effect: diet-based strategies for cancer prevention. BioMed Res Intl 2020(8105735):1–9. https://doi.org/10.1155/2020/8105735
doi: 10.1155/2020/8105735
Kopeina GS, Senichkin VV, Zhivotovsky B (2017) Caloric restriction - a promising anti-cancer approach: from molecular mechanisms to clinical trials. Biochim Biophys Acta (BBA) Rev Cancer 1867(1):29–41. https://doi.org/10.1016/j.bbcan.2016.11.002
doi: 10.1016/j.bbcan.2016.11.002
Marín-Aguilar F, Pavillard LE, Giampieri F, Bullón P, Cordero MD (2017) Adenosine monophosphate (AMP)-activated protein kinase: a new target for nutraceutical compounds. Int J Mol Sci 18(288):1–24. https://doi.org/10.3390/ijms18020288
doi: 10.3390/ijms18020288
Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D (2020) The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol 10:2064. https://doi.org/10.3389/fonc.2020.578418
doi: 10.3389/fonc.2020.578418
Elibol B, Kilic U (2018) High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front Endocrinol 9:614. https://doi.org/10.3389/fendo.2018.00614
doi: 10.3389/fendo.2018.00614
Zhang J, Deng Y, Khoo BL (2020) Fasting to enhance cancer treatment in models: the next steps. J Biomed Sci 27:58. https://doi.org/10.1186/s12929-020-00651-0
doi: 10.1186/s12929-020-00651-0
pubmed: 32370764
pmcid: 7201989
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K (2018) Molecular actions of PPARα in lipid metabolism and inflammation. Endocrine Rev 39(5):760–802. https://doi.org/10.1210/er.2018-00064
doi: 10.1210/er.2018-00064
Lu K, Dong S, Wu X, Jin R, Chen H (2021) Probiotics in cancer. Front. Oncol 11:408. https://doi.org/10.3389/fonc.2021.638148
doi: 10.3389/fonc.2021.638148
Pistollato F, Forbes-Hernandez TY, Iglesias RC, Ruiz R, Zabaleta ME, Dominguez I, Cianciosi D, Quiles JL, Giampieri F, Battino M (2021) Effects of caloric restriction on immunosurveillance, microbiota and cancer cell phenotype: possible implications for cancer treatment. Sem Cancer Biol 73:45–57. https://doi.org/10.1016/j.semcancer.2020.11.017
doi: 10.1016/j.semcancer.2020.11.017
Yin J, Ren W, Huang X, Li T, Yin Y (2018) Protein restriction and cancer. Biochim Biophys Acta Rev Cancer 1869:256–262. https://doi.org/10.1016/j.bbcan.2018.03.004
doi: 10.1016/j.bbcan.2018.03.004
pubmed: 29596961
Akinyele O, Wallace HM (2021) Characterising the response of human breast cancer cells to polyamine modulation. Biomolecules 11(5):743. https://doi.org/10.3390/biom11050743
doi: 10.3390/biom11050743
pubmed: 34067619
pmcid: 8156773
Pegg AE (2014) The function of spermine. IUBMB Life 66(1):8–18. https://doi.org/10.1002/iub.1237
doi: 10.1002/iub.1237
pubmed: 24395705
Tse RT, Wong CY, Chiu PK, Ng CF (2022) The potential role of spermine and its acetylated derivative in human malignancies. Int J Mol Sci 23(3):1258. https://doi.org/10.3390/ijms23031258
doi: 10.3390/ijms23031258
pubmed: 35163181
pmcid: 8836144
Cervelli M, Pietropaoli S, Signore F, Amendola R, Mariottini P (2014) Polyamines metabolism and breast cancer: state of the art and perspectives. Breast Cancer Res Treat 148(2):233–248. https://doi.org/10.1007/s10549-014-3156-7
doi: 10.1007/s10549-014-3156-7
pubmed: 25292420
Stabellini G, Calastrini C, Gagliano N, Dellavia C, Moscheni C, Vizzotto L, Occhionorelli S, Gioia M (2003) Polyamine levels and ornithine decarboxylase activity in blood and erythrocytes in human diseases. Int J Clin Pharmacol Res 23(1):17–22
pubmed: 14621069
Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376(Pt 1):1–14. https://doi.org/10.1042/BJ20031327
doi: 10.1042/BJ20031327
pubmed: 13678416
pmcid: 1223767
Fahrmann JF, Vykoukal J, Fleury A, Tripathi S, Dennison JB, Murage E, Wang P, Yu CY, Capello M, Creighton CJ et al (2020) Association between plasma diacetylspermine and tumor spermine synthase with outcome in triple-negative breast cancer. J Natl Cancer Inst 112(6):607–616. https://doi.org/10.1093/jnci/djz182
doi: 10.1093/jnci/djz182
pubmed: 31503278
Soda K, Uemura T, Sanayama H, Igarashi K, Fukui T (2021) Polyamine-rich diet elevates blood spermine levels and inhibits pro-inflammatory status: an interventional study. Med Sci (Basel) 9(2):22. https://doi.org/10.3390/medsci9020022
doi: 10.3390/medsci9020022
Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G (2020) Nutritional aspects of spermidine. Ann Rev Nutr 40:135–159. https://doi.org/10.1146/annurev-nutr-120419-015419
doi: 10.1146/annurev-nutr-120419-015419
Mirzaei H, Suarez JA, Longo VD (2014) Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab 25(11):558–566. https://doi.org/10.1016/j.tem.2014.07.002
doi: 10.1016/j.tem.2014.07.002
pubmed: 25153840
pmcid: 4254277
Geck RC, Foley JR, Murray Stewart T, Asara JM, Casero RA Jr, Toker A (2020) Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy. J Biol Chem 295(19):6263–6277. https://doi.org/10.1074/jbc.RA119.012376
doi: 10.1074/jbc.RA119.012376
pubmed: 32139506
pmcid: 7212655
Laron Z (2001) Insulin-like growth factor (IGF-1): a growth hormone. J Clin Pathol Mol Pathol 54:311–316. https://doi.org/10.1136/mp.54.5.311
doi: 10.1136/mp.54.5.311
Hua H, Kong Q, Yin J, Zhang J, Jiang Y (2020) Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 13(64):1–17. https://doi.org/10.1186/s13045-020-00904-3
doi: 10.1186/s13045-020-00904-3
Monson KR, Goldberg M, Wu H-C, Santella RM, Chung WK, Terry MB (2020) Circulating growth factor concentrations and breast cancer risk: a nested case-control study of IGF-1, IGFBP-3, and breast cancer in a family-based cohort. Breast Cancer Res 22(109):105. https://doi.org/10.1186/s13058-020-01352-0
doi: 10.1186/s13058-020-01352-0
Cevenini A, Orrù S, Mancini A, Alfieri A, Buono P, Imperlini E (2018) Molecular signatures of the insulin-like growth factor 1-mediated epithelial-mesenchymal transition in breast, lung and gastric cancers. Int J Mol Sci 19(2411):1–24. https://doi.org/10.3390/ijms19082411
doi: 10.3390/ijms19082411
Gozzelino L, De Santis MC, Gulluni F, Hirsch E, Martini M (2020) PI(3,4)P2 Signaling in Cancer and Metabolism. Front Oncol 10:360. https://doi.org/10.3389/fonc.2020.00360
doi: 10.3389/fonc.2020.00360
pubmed: 32296634
pmcid: 7136497
Jiang T, Zhang G, Lou Z (2020) Role of the sterol regulatory element binding protein pathway in tumorigenesis. Front Oncol 10:1788. https://doi.org/10.3389/fonc.2020.01788
doi: 10.3389/fonc.2020.01788
pubmed: 33014877
pmcid: 7506081
Dong C, Wu J, Chen Y, Nie J, Chen C (2021) Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front Pharmacol 15:628690. https://doi.org/10.3389/fphar.2021.628690
doi: 10.3389/fphar.2021.628690
Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17(9):528–542. https://doi.org/10.1038/nrc.2017.53
doi: 10.1038/nrc.2017.53
pubmed: 28751651
Amaravadi RK, Kimmelman AC, Debnath J (2019) Targeting autophagy in cancer: recent advances and future directions. Cancer Discov 9(9):1167–1181. https://doi.org/10.1158/2159-8290.CD-19-0292
doi: 10.1158/2159-8290.CD-19-0292
pubmed: 31434711
pmcid: 7306856
Csizmadia T, Juhász G (2020) Crinophagy mechanisms and its potential role in human health and disease. Prog Mol Biol Transl Sci 172:239–255. https://doi.org/10.1016/bs.pmbts.2020.02.002
doi: 10.1016/bs.pmbts.2020.02.002
pubmed: 32620244
Cocco S, Leone A, Piezzo M, Caputo R, Di Lauro V, Di Rella F, Fusco G, Capozzi M, Gioia GD, Budillon A et al (2020) Targeting autophagy in breast cancer. Int J Mol Sci 21(21):7836. https://doi.org/10.3390/ijms21217836
doi: 10.3390/ijms21217836
pmcid: 7660056
Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10(9):1533–1541. https://doi.org/10.1158/1535-7163.MCT-11-0047
doi: 10.1158/1535-7163.MCT-11-0047
pubmed: 21878654
pmcid: 3170456
Sharifi MN, Mowers EE, Drake LE, Collier C, Chen H, Zamora M, Mui S, Macleod KF (2016) Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep 15(8):1660–1672. https://doi.org/10.1016/j.celrep.2016.04.065
doi: 10.1016/j.celrep.2016.04.065
pubmed: 27184837
pmcid: 4880529
White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15(17):5308–5316. https://doi.org/10.1158/1078-0432.CCR-07-5023
doi: 10.1158/1078-0432.CCR-07-5023
pubmed: 19706824
pmcid: 2737083
Gao X, Zacharek A, Salkowski A, Grignon DJ, Sakr W, Porter AT, Honn KV (1995) Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res 55(5):1002–1005
pubmed: 7866981
Saito H, Inazawa J, Saito S, Kasumi F, Koi S, Sagae S, Kudo R, Saito J, Noda K, Nakamura Y (1993) Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2-cM region on 17q21.3 often and commonly deleted in tumors. Cancer Res 53(14):3382–3385
pubmed: 8100738
Tangir J, Muto MG, Berkowitz RS, Welch WR, Bell DA, Mok SC (1996) A 400 kb novel deletion unit centromeric to the BRCA1 gene in sporadic epithelial ovarian cancer. Oncogene 12(4):735–740
pubmed: 8632895
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820. https://doi.org/10.1172/JCI20039
doi: 10.1172/JCI20039
pubmed: 14638851
pmcid: 297002
Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676. https://doi.org/10.1038/45257
doi: 10.1038/45257
pubmed: 10604474
Laddha SV, Ganesan S, Chan CS, White E (2014) Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res 12(4):485–490. https://doi.org/10.1158/1541-7786.MCR-13-0614
doi: 10.1158/1541-7786.MCR-13-0614
pubmed: 24478461
pmcid: 3989371
Lock R, Kenific CM, Leidal AM, Salas E, Debnath J (2014) Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov 4(4):466–479. https://doi.org/10.1158/2159-8290.CD-13-0841
doi: 10.1158/2159-8290.CD-13-0841
pubmed: 24513958
pmcid: 3980002
Chung HY, Kim DH, Bang E, Yu BP (2020) Impacts of calorie restriction and intermittent fasting on health and diseases: current trends. Nutrients 12(10):2948. https://doi.org/10.3390/nu12102948
doi: 10.3390/nu12102948
pmcid: 7599444
Chung KW, Chung HY (2019) The effects of calorie restriction on autophagy: role on aging intervention. Nutrients 11(12):2923. https://doi.org/10.3390/nu11122923
doi: 10.3390/nu11122923
pmcid: 6950580
Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen T, Juhász G et al (2017) Microenvironmental autophagy promotes tumour growth. Nature 541(7637):417–420. https://doi.org/10.1038/nature20815
doi: 10.1038/nature20815
pubmed: 28077876
pmcid: 5612666
Yang Y, Karsli-Uzunbas G, Poillet-Perez L, Sawant A, Hu ZS, Zhao Y, Moore D, Hu W, White E (2020) Autophagy promotes mammalian survival by suppressing oxidative stress and p53. Genes Dev 34(9–10):688–700. https://doi.org/10.1101/gad.335570.119
doi: 10.1101/gad.335570.119
pubmed: 32193353
pmcid: 7197357
Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30(17):1913–1930. https://doi.org/10.1101/gad.287524.116
doi: 10.1101/gad.287524.116
pubmed: 27664235
pmcid: 5066235
Zhu J, Li Y, Tian Z, Hua X, Gu J, Li J, Liu C, Jin H, Wang Y, Jiang G et al (2017) ATG7 Overexpression is crucial for tumorigenic growth of bladder cancer in vitro and in vivo by targeting the ETS2/miRNA196b/FOXO1/p27 axis. Mol Ther Nucleic Acids 7:299–313. https://doi.org/10.1016/j.omtn.2017.04.012
doi: 10.1016/j.omtn.2017.04.012
pubmed: 28624205
pmcid: 5415961
Sun S, Wang Z, Tang F, Hu P, Yang Z, Xue C, Gong J, Shi L, Xie C (2016) ATG7 promotes the tumorigenesis of lung cancer but might be dispensable for prognosis predication: a clinicopathologic study. Onco Targets Ther 9:4975–4981. https://doi.org/10.2147/OTT.S107876
doi: 10.2147/OTT.S107876
pubmed: 27563251
pmcid: 4986672
Desai S, Liu Z, Yao J, Patel N, Chen J, Wu Y, Ahn EE, Fodstad O, Tan M (2013) Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). J Biol Chem 288(13):9165–9176. https://doi.org/10.1074/jbc.M112.422071
doi: 10.1074/jbc.M112.422071
pubmed: 23386620
pmcid: 3610989
Collier JJ, Suomi F, Olahova M, McWilliams TG, Taylor RW (2021) Emerging roles of ATG7 in human health and disease. EMBO Mol Med 13:e14824. https://doi.org/10.15252/emmm.202114824
doi: 10.15252/emmm.202114824
pubmed: 34725936
pmcid: 8649875
Antunes F, Erustes AG, Costa AJ, Nascimento AC, Bincoletto C, Ureshino RP, Pereira GJS, Smaili SS (2018) Autophagy and intermittent fasting: the connection for cancer therapy? Clinics (Sao Paulo) 73(suppl 1):e814s. https://doi.org/10.6061/clinics/2018/e814s
doi: 10.6061/clinics/2018/e814s
Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16(7):487–511. https://doi.org/10.1038/nrd.2017.22
doi: 10.1038/nrd.2017.22
pubmed: 28529316
pmcid: 5713640
Korde LA, Somerfield MR, Carey LA, Crews JR, Denduluri N, Hwang ES, Khan SA, Loibl S, Morris EA, Perez A et al (2021) Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO Guideline. J Clin Oncol 39(13):1485–1505. https://doi.org/10.1200/JCO.29.03399
doi: 10.1200/JCO.29.03399
pubmed: 33507815
pmcid: 8274745
Asaoka M, Gandhi S, Ishikawa T, Takabe K (2020) Neoadjuvant chemotherapy for breast cancer: past, present, and future. Breast Cancer Basic Clin Res 14:1–8. https://doi.org/10.1177/1178223420980377
doi: 10.1177/1178223420980377
Haussmann J, Corradini S, Nestle-Kraemling C, Bölke E, Njanang FJD, Tamaskovics B, Orth K, Ruckhaeberle E, Fehm T, Mohrmann S et al (2020) Recent advances in radiotherapy of breast cancer. Radiat Oncol 15:71. https://doi.org/10.1186/s13014-020-01501-x
doi: 10.1186/s13014-020-01501-x
pubmed: 32228654
pmcid: 7106718
Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G (2021) Breast cancer. The Lancet 397(10286):1750–1769. https://doi.org/10.1016/S0140-6736(20)32381-3
doi: 10.1016/S0140-6736(20)32381-3
Chaudhuri S, Thomas S, Munster P (2021) Immunotherapy in breast cancer: a clinician’s perspective. J Nat Cancer Cent 1(2):47–57. https://doi.org/10.1016/j.jncc.2021.01.001
doi: 10.1016/j.jncc.2021.01.001
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F (2019) Breast Cancer Nat Rev Dis Primers 5:66. https://doi.org/10.1038/s41572-019-0111-2
doi: 10.1038/s41572-019-0111-2
pubmed: 31548545
Alidadi M, Banach M, Guest PC, Bo S, Jamialahmadi T, Sahebkar A (2021) The effect of caloric restriction and fasting on cancer. Sem Cancer Biol 73:30–44. https://doi.org/10.1016/j.semcancer.2020.09.010
doi: 10.1016/j.semcancer.2020.09.010
Rogozina OP, Bonorden MJL, Seppanen CN, Grande JP, Cleary MP (2011) Effect of chronic and intermittent calorie restriction on serum adiponectin and leptin and mammary tumorigenesis. Cancer Prev Res (Phila) 4(4):568–581. https://doi.org/10.1158/1940-6207.CAPR-10-0140
doi: 10.1158/1940-6207.CAPR-10-0140
Yildirim EK, Balkaya M (2021) Dynamics of breast tumor incidence, tumor volume and serum metabolic hormones in calorie restricted rats. Biotechn Histochem 96(5):339–346. https://doi.org/10.1080/10520295.2020.1791955
doi: 10.1080/10520295.2020.1791955
Claessens AKM, Ibragimova KIE, Geurts SME, Bos MEMM, Erdkamp FLG, Tjan-Heijnen VCG (2020) The role of chemotherapy in treatment of advanced breast cancer: an overview for clinical practice. Crit Rev Oncol Hematol 153:102988. https://doi.org/10.1016/j.critrevonc.2020.102988
doi: 10.1016/j.critrevonc.2020.102988
pubmed: 32599374
Sadeghian M, Rahmani S, Khalesi S, Hejazi E (2021) A review of fasting effects on the response of cancer to chemotherapy. Clin Nutr 40(4):1669–1681. https://doi.org/10.1016/j.clnu.2020.10.037
doi: 10.1016/j.clnu.2020.10.037
pubmed: 33153820
Brandhorst S (2021) Fasting and fasting-mimicking diets for chemotherapy augmentation. Gerosci 43(3):1201–1216. https://doi.org/10.1007/s11357-020-00317-7
doi: 10.1007/s11357-020-00317-7
Brandhorst S, Longo VD (2016) Fasting and caloric restriction in cancer prevention and treatment. In: Cramer TA, Schmitt C (eds) Metabolism in Cancer. Springer International Publishing, Cham, Switzerland, pp 241–266
doi: 10.1007/978-3-319-42118-6_12
Caffa I, Spagnolo V, Vernieri C, Valdemarin F, Becherini P, Wei M, Brandhorst S, Zucal C, Driehuis E, Ferrando L et al (2020) Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 583(7817):620–624. https://doi.org/10.1038/s41586-020-2502-7
doi: 10.1038/s41586-020-2502-7
pubmed: 32669709
pmcid: 7881940
Keyvani V, Kerachian MA (2014) The effect of fasting on the important molecular mechanisms related to cancer treatment. J Nutr Fasting Health 2(3):113–118. https://doi.org/10.22038/jfh.2014.3510
doi: 10.22038/jfh.2014.3510
Simone BA, Palagani A, Strickland K, Ko K, Jin L, Lim MK, Dan TD, Sarich M, Monti DA, Cristofanilli M et al (2018) Caloric restriction counteracts chemotherapy-induced inflammation and increases response to therapy in a triple negative breast cancer model. Cell Cycle 17(13):1536–1544. https://doi.org/10.1080/15384101.2018.1471314
doi: 10.1080/15384101.2018.1471314
pubmed: 29912618
pmcid: 6133339
Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N, Stange R, Kunz B, Brückner B, Sehouli J, Michalsen A (2018) The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer 18(1):476. https://doi.org/10.1186/s12885-018-4353-2
doi: 10.1186/s12885-018-4353-2
pubmed: 29699509
pmcid: 5921787
De Groot S, Lugtenberg RT, Cohen D, Welters MJP, Ehsan I, Vreeswijk MPG, Smit VTHBM, De Graaf H, Heijns JB, Portielje JEA et al (2020) Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun 11:3083. https://doi.org/10.1038/s41467-020-16138-3
doi: 10.1038/s41467-020-16138-3
pubmed: 32576828
pmcid: 7311547
Vernieri C, Ligorio F, Zattarin E, Rivoltini L, De Braud F (2020) Fasting-mimicking diet plus chemotherapy in breast cancer treatment. Nat Commun 11:4274. https://doi.org/10.1038/s41467-020-18194-1
doi: 10.1038/s41467-020-18194-1
pubmed: 32848145
pmcid: 7450058
Dorff TB, Groshen S, Garcia A, Shah M, Tsao-Wei D, Pham H, Cheng C-W, Brandhorst S, Cohen P, Wei M et al (2016) Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 16:360. https://doi.org/10.1186/s12885-016-2370-6
doi: 10.1186/s12885-016-2370-6
pubmed: 27282289
pmcid: 4901417
Lutes C, Zelig R, Radler DR (2020) Safety and feasibility of intermittent fasting during chemotherapy for breast cancer: a review of the literature. Top Clin Nutr 35(2):168–177. https://doi.org/10.1097/TIN.0000000000000215
doi: 10.1097/TIN.0000000000000215
Icard P, Ollivier L, Forgez P, Otz J, Alifano M, Fournel L, Loi M, Thariat J (2020) Perspective: do fasting, caloric restriction, and diets increase sensitivity to radiotherapy? A literature review. Adv Nutr 11(5):1089–1101. https://doi.org/10.1093/advances/nmaa062
doi: 10.1093/advances/nmaa062
pubmed: 32492154
pmcid: 7490158
Yoshida K, Inoue T, Nojima K, Hirabayashi Y, Sado T (1997) Calorie restriction reduces the incidence of myeloid leukemia induced by a single whole-body radiation in C3H/He mice. Proc Natl Acad Sci USA 94:2615–2619. https://doi.org/10.1073/pnas.94.6.2615
doi: 10.1073/pnas.94.6.2615
pubmed: 9122244
pmcid: 20137
Saleh AD, Simone BA, Palazzo J, Savage JE, Sano Y, Dan T, Jin LJ, Champ CE, Zhao SP, Lim M et al (2013) Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle 12(12):1955–1963
doi: 10.4161/cc.25016
Habermann N, Makar KW, Abbenhardt C, Xiao L, Wang C-Y, Utsugi HK, Alfano CM, Campbell KL, Duggan C, Foster-Schubert KE et al (2015) No effect of caloric restriction or exercise on radiation repair capacity. Med Sci Sports Exer 47(5):896–904. https://doi.org/10.1249/MSS.0000000000000480
doi: 10.1249/MSS.0000000000000480
Valayer S, Kim D, Fogtman A, Straube U, Winnard A, Caplan N, Green DA, van Leeuwen FHP, Weber T (2020) The potential of fasting and caloric restriction to mitigate radiation damage–a systematic review. Front Nutr 7:584543. https://doi.org/10.3389/fnut.2020.584543
doi: 10.3389/fnut.2020.584543
pubmed: 33072801
pmcid: 7530334
Akkin S, Varan G, Bilensoy E (2021) A review of cancer immunotherapy and applications of nanothechnology to chemoimmunotherapy of different cancers. Molecules 26:3382. https://doi.org/10.3390/molecules26113382
doi: 10.3390/molecules26113382
pubmed: 34205019
pmcid: 8199882
Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–668. https://doi.org/10.1038/s41577-020-0306-5
doi: 10.1038/s41577-020-0306-5
pubmed: 32433532
pmcid: 7238960
Berger ER, Park T, Saridakis A, Golshan M, Greenup RA, Ahuja N (2021) Immunotherapy treatment for triple negative breast cancer. Pharmaceuticals 14(8):763. https://doi.org/10.3390/ph14080763
doi: 10.3390/ph14080763
pubmed: 34451860
pmcid: 8401402
Bayraktar S, Batoo S, Okuno S, Glück S (2019) Immunotherapy in breast cancer. J Carcinog 18:2. https://doi.org/10.4103/jcar.JCar_2_19
doi: 10.4103/jcar.JCar_2_19
pubmed: 31160888
pmcid: 6540776
Thomas R, Al-Khadairi G, Decock J (2021) Immune checkpoint inhibitors in triple negative breast cancer treatment: promising future prospects. Front Oncol 10:3464. https://doi.org/10.3389/fonc.2020.600573
doi: 10.3389/fonc.2020.600573
Cai J, Wang D, Zhang G, Guo X (2019) The role of PD-1/PD-L1 axis in Treg development and function: implications for cancer immunotherapy. Onco Targets Ther 12:8437–8445. https://doi.org/10.2147/OTT.S221340
doi: 10.2147/OTT.S221340
pubmed: 31686860
pmcid: 6800566
Zhang J, Tian Q, Zhang M, Wang H, Wu L, Yang J (2021) Immune-related biomarkers in triple-negative breast cancer. Breast Cancer 28:792–805. https://doi.org/10.1007/s12282-021-01247-8
doi: 10.1007/s12282-021-01247-8
pubmed: 33837508
Jung LKL, Palladino MA, Calvano S, Mark DA, Good RA, Fernandes G (1982) Effect of calorie restriction on the production and responsiveness to interleukin 2 in (NZB × NZW)F1 mice. Clin Immuno Immunopath 25(2):295–301. https://doi.org/10.1016/0090-1229(82)90192-1
doi: 10.1016/0090-1229(82)90192-1
Liu P, Zhao L, Kepp O, Kroemer G (2019) Crizotinib–a tyrosine kinase inhibitor that stimulates immunogenic cell death. OncoImmunol 8:1596652–1596653. https://doi.org/10.1080/2162402X.2019.1596652
doi: 10.1080/2162402X.2019.1596652
Lévesque S, Le Naour J, Pietrocola F, Paillet J, Kremer M, Castoldi F, Baracco EE, Wang Y, Vacchelli E, Stoll G et al (2019) A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunol 8(11):e1657375. https://doi.org/10.1080/2162402X.2019.1657375
doi: 10.1080/2162402X.2019.1657375
Kirkham AA, King K, Joy AA, Pelletier AB, Mackey JR, Young K, Zhu X, Meza-Junco J, Basi SK, Hiller JP et al (2021) Rationale and design of the Diet Restriction and Exercise-induced Adaptations in Metastatic breast cancer (DREAM) study: a 2-arm, parallel-group, phase II, randomized control trial of a short-term, calorie-restricted, and ketogenic diet plus exercise during intravenous chemotherapy versus usual care. BMC Cancer 21:1093. https://doi.org/10.1186/s12885-021-08808-2
doi: 10.1186/s12885-021-08808-2
pubmed: 34629067
pmcid: 8504029
Shingler E, Perry R, Mitchell A, England C, Perks C, Herbert G, Ness A, Atkinson C (2019) Dietary restriction during the treatment of cancer: results of a systematic scoping review. BMC Cancer 19:811. https://doi.org/10.1186/s12885-019-5931-7
doi: 10.1186/s12885-019-5931-7
pubmed: 31416430
pmcid: 6694513