Effects of human mobility and behavior on disease transmission in a COVID-19 mathematical model.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 06 2022
Historique:
received: 29 10 2021
accepted: 02 06 2022
entrez: 27 6 2022
pubmed: 28 6 2022
medline: 30 6 2022
Statut: epublish

Résumé

Human interactions and perceptions about health risk are essential to understand the evolution over the course of a pandemic. We present a Susceptible-Exposed-Asymptomatic-Infectious-Recovered-Susceptible mathematical model with quarantine and social-distance-dependent transmission rates, to study COVID-19 dynamics. Human activities are split across different location settings: home, work, school, and elsewhere. Individuals move from home to the other locations at rates dependent on their epidemiological conditions and maintain a social distancing behavior, which varies with their location. We perform simulations and analyze how distinct social behaviors and restrictive measures affect the dynamic of the disease within a population. The model proposed in this study revealed that the main focus on the transmission of COVID-19 is attributed to the "home" location setting, which is understood as family gatherings including relatives and close friends. Limiting encounters at work, school and other locations will only be effective if COVID-19 restrictions occur simultaneously at all those locations and/or contact tracing or social distancing measures are effectively and strictly implemented, especially at the home setting.

Identifiants

pubmed: 35760930
doi: 10.1038/s41598-022-14155-4
pii: 10.1038/s41598-022-14155-4
pmc: PMC9237048
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10840

Informations de copyright

© 2022. The Author(s).

Références

Hu, B., Guo, H., Zhou, P. & Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 1–14 (2020).
Coronavirus disease (COVID-19) pandemic, world health organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (2021).
What you should know about COVID-19 to protect yourself and others, centers for disease control and prevention (CDC). https://www.cdc.gov/coronavirus/2019-ncov/downloads/2019-ncov-factsheet.pdf (2020).
Wang, M.-Y. et al. SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Front. Cell. Infect. Microbiol. 10, 587269 (2020).
pubmed: 33324574 pmcid: 7723891 doi: 10.3389/fcimb.2020.587269
Who coronavirus (COVID-19) dashboard. https://covid19.who.int (2021).
Status of COVID-19 vaccines within who EUL/PQ evaluation process, World Health Organization (WHO). https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_07April2021.pdf (2021).
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
pubmed: 33301246 doi: 10.1056/NEJMoa2034577
Voysey, M. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99–111 (2021).
pubmed: 33306989 pmcid: 7723445 doi: 10.1016/S0140-6736(20)32661-1
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
pubmed: 33378609 doi: 10.1056/NEJMoa2035389
Wu, Z. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 21, 803–812 (2021).
pubmed: 33548194 pmcid: 7906628 doi: 10.1016/S1473-3099(20)30987-7
Zhang, Y. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 21, 181–192 (2021).
pubmed: 33217362 doi: 10.1016/S1473-3099(20)30843-4
Bueno, S. M. et al. Interim report: Safety and immunogenicity of an inactivated vaccine against SARS-CoV-2 in healthy Chilean adults in a phase 3 clinical trial. medRxiv (2021).
Interim public health recommendations for fully vaccinated people, centers for disease control and prevention (CDC). https://www.cdc.gov/coronavirus/2019-ncov/vaccines/fully-vaccinated-guidance.html (2021).
About variants of the virus that causes COVID-19, centers for disease control and prevention (CDC). https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant.html (2021).
Aleta, A. et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat. Hum. Behav. 4, 964–971 (2020).
pubmed: 32759985 pmcid: 7641501 doi: 10.1038/s41562-020-0931-9
When to quarantine, centers for disease control and prevention (CDC). https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/quarantine.html (2021).
Kucharski, A. J. et al. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: A mathematical modelling study. Lancet Infect. Dis. 20, 1151–1160 (2020).
pubmed: 32559451 pmcid: 7511527 doi: 10.1016/S1473-3099(20)30457-6
Funk, S. et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics 10, 21–25 (2015).
pubmed: 25843377 doi: 10.1016/j.epidem.2014.09.005
Di Renzo, L. et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 18, 1–15 (2020).
doi: 10.1186/s12967-020-02399-5
Bertozzi, A. L., Franco, E., Mohler, G., Short, M. B. & Sledge, D. The challenges of modeling and forecasting the spread of COVID-19. Proc. Natl. Acad. Sci. 117, 16732–16738 (2020).
pubmed: 32616574 pmcid: 7382213 doi: 10.1073/pnas.2006520117
Carrasco, J. A., Miller, E. J. & Wellman, B. How far and with whom do people socialize? Empirical evidence about distance between social network members. Transp. Res. Rec. 2076, 114–122 (2008).
doi: 10.3141/2076-13
Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5, e74 (2008).
pubmed: 18366252 pmcid: 2270306 doi: 10.1371/journal.pmed.0050074
Davidow, A. L. et al. Workplace contact investigations in the United States. Int. J. Tuberc. Lung Dis. 7, S446–S452 (2003).
pubmed: 14677836
Chingos, M. M. & Whitehurst, G. J. Class Size: What Research Says and What It Means for State Policy. (Brookings Institute, 2011) (Accessed 5 June 2016).
Barro, R. J. & Lee, J. W. International measures of schooling years and schooling quality. Am. Econ. Rev. 86, 218–223 (1996).
Opanuga, A. A., Okagbue, H. I., Oguntunde, P. E., Bishop, S. A. & Ogundile, O. P. Learning analytics: Issues on the pupil-teacher ratio in public primary schools in Nigeria. Int. J. Emerg. Technol. Learn. 14 (2019).
Ahmed, F., Zviedrite, N. & Uzicanin, A. Effectiveness of workplace social distancing measures in reducing influenza transmission: A systematic review. BMC Public Health 18, 1–13 (2018).
doi: 10.1186/s12889-018-5446-1
Ster, I. C. & Ferguson, N. M. Transmission parameters of the 2001 foot and mouth epidemic in Great Britain. PLoS ONE 2, e502 (2007).
doi: 10.1371/journal.pone.0000502
Acosta, C. A. Cuatro preguntas para iniciarse en cambio organizacional. Revista colombiana de psicología 9–24 (2002).
Amaoka, T., Laga, H., Saito, S. & Nakajima, M. Personal space modeling for human-computer interaction. In International Conference on Entertainment Computing, 60–72 (Springer, 2009).
González Pérez, U. El modo de vida en la comunidad y la conducta cotidiana de las personas. Revista Cubana de Salud Pública 31, 0 (2005).
Hall, E. T. et al. Proxemics [and comments and replies]. Curr. Anthropol. 9, 83–108 (1968).
doi: 10.1086/200975
Sorokowska, A. et al. Preferred interpersonal distances: A global comparison. J. Cross-Cult. Psychol. 48, 577–592 (2017).
doi: 10.1177/0022022117698039
Maharaj, S. & Kleczkowski, A. Controlling epidemic spread by social distancing: Do it well or not at all. BMC Public Health 12, 1–16 (2012).
doi: 10.1186/1471-2458-12-679
Jarvis, C. I. et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 18, 1–10 (2020).
doi: 10.1186/s12916-020-01597-8
Salje, H., Cummings, D. A. & Lessler, J. Estimating infectious disease transmission distances using the overall distribution of cases. Epidemics 17, 10–18 (2016).
pubmed: 27744095 pmcid: 5159225 doi: 10.1016/j.epidem.2016.10.001
Van Bavel, J. J. et al. Using social and behavioural science to support COVID-19 pandemic response. Nat. Hum. Behav. 4, 460–471 (2020).
pubmed: 32355299 doi: 10.1038/s41562-020-0884-z
Ferguson, N. Capturing human behaviour. Nature 446, 733 (2007).
pubmed: 17429381 doi: 10.1038/446733a
Boada-Cuerva, M., Boada-Grau, J., Prizmic-Kuzmica, A. J., de Diego, N. G. & Vigil-Colet, A. Rtc-11: Adaptación de la escala de resistencia al cambio en dos países (españa y argentina). Anales de Psicología/Annals of Psychology 34, 360–367 (2018).
doi: 10.6018/analesps.34.2.286721
Oreg, S. et al. Dispositional resistance to change: Measurement equivalence and the link to personal values across 17 nations. J. Appl. Psychol. 93, 935 (2008).
pubmed: 18642996 doi: 10.1037/0021-9010.93.4.935
American time use survey (ATUS). https://www.bls.gov/tus/#data (2020).
Fisher, K. & Robinson, J. Average weekly time spent in 30 basic activities across 17 countries. Soc. Indic. Res. 93, 249–254 (2009).
doi: 10.1007/s11205-008-9372-y
How Americans spend their time. https://www.edq.com (2021).
Infographics. https://www.statista.com (2021).
COVID-19 community mobility report, google. https://www.google.com/covid19/mobility/index.html?hl=en (2021).
Hethcote, H. W. The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000).
doi: 10.1137/S0036144500371907
Allen, L. J., Brauer, F., Van den Driessche, P. & Wu, J. Mathematical Epidemiology Vol. 1945 (Springer, 2008).
doi: 10.1007/978-3-540-78911-6_3
Brauer, F. & Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology Vol. 2 (Springer, 2012).
doi: 10.1007/978-1-4614-1686-9
Roddam, A. W. Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation: O diekmann and jap heesterbeek, 2000, 303. ISBN 0-471-49241-8 (Wiley, 2001).
Chowell, G., Sattenspiel, L., Bansal, S. & Viboud, C. Mathematical models to characterize early epidemic growth: A review. Phys. Life Rev. 18, 66–97 (2016).
pubmed: 27451336 pmcid: 5348083 doi: 10.1016/j.plrev.2016.07.005
Harjule, P., Tiwari, V. & Kumar, A. Mathematical models to predict COVID-19 outbreak: An interim review. J. Interdiscip. Math. 24, 259–284 (2021).
doi: 10.1080/09720502.2020.1848316
D’angelo, D. et al. Strategies to exiting the COVID-19 lockdown for workplace and school: A scoping review. Saf. Sci. 134, 105067 (2020).
pubmed: 33162676 pmcid: 7604014 doi: 10.1016/j.ssci.2020.105067
Gumel, A. B., Iboi, E. A., Ngonghala, C. N. & Elbasha, E. H. A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations. Infect. Dis. Model. 6, 148–168 (2021).
pubmed: 33474518
Cabrera, M., Cordova-Lepe, F., Gutierrez-Jara, J. P. & Vogt Geisse, K. An sir type epidemiological model that integrates social distancing as a dynamic law based on point prevalence and socio-behavioral factors. Sci. Rep. 11, 1–16 (2021).
doi: 10.1038/s41598-021-89492-x
Kermack, W. Q. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 115, 700–721 (1927).
Efimov, D. & Ushirobira, R. On an interval prediction of COVID-19 development based on a SEIR epidemic model. (2020).
Fredj, H. B. & Chrif, F. Novel corona virus disease infection in Tunisia: Mathematical model and the impact of the quarantine strategy. Chaos Solitons Fractals 138, 109969 (2020).
pubmed: 32536761 pmcid: 7284269 doi: 10.1016/j.chaos.2020.109969
Bhadauria, A. S., Pathak, R. & Chaudhary, M. A SIQ mathematical model on COVID-19 investigating the lockdown effect. Infect. Dis. Model. 6, 244–257 (2021).
pubmed: 33437896 pmcid: 7789846
Capasso, V. & Serio, G. A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 43–61 (1978).
doi: 10.1016/0025-5564(78)90006-8
Wang, X., Gao, D. & Wang, J. Influence of human behavior on cholera dynamics. Math. Biosci. 267, 41–52 (2015).
pubmed: 26119824 pmcid: 4537851 doi: 10.1016/j.mbs.2015.06.009
Kolokolnikov, T. & Iron, D. Law of mass action and saturation in sir model with application to coronavirus modelling. Infec. Dis. Model. 6, 91–97 (2021).
van den Driessche, P. & Watmough, J. A simple sis epidemic model with a backward bifurcation. J. Math. Biol. 40, 525–540 (2000).
pubmed: 10945647 doi: 10.1007/s002850000032
Kochańczyk, M., Grabowski, F. & Lipniacki, T. Dynamics of COVID-19 pandemic at constant and time-dependent contact rates. Math. Model. Nat. Phenomena 15, 28 (2020).
doi: 10.1051/mmnp/2020011
Taghvaei, A., Georgiou, T., Norton, L. & Tannenbaum, A. Fractional sir epidemiological models. Sci. Rep. 10, 20882 (2020).
pubmed: 33257790 pmcid: 7705759 doi: 10.1038/s41598-020-77849-7
Ruan, S. & Wang, W. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188, 135–163 (2003).
doi: 10.1016/S0022-0396(02)00089-X
Reluga, T. C. Game theory of social distancing in response to an epidemic. PLoS Comput. Biol. 5, e1000793 (2010).
doi: 10.1371/journal.pcbi.1000793
d’Onofrio, A. & Manfredi, P. Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases. J. Theor. Biol. 256, 473–478 (2009).
pubmed: 18992258 doi: 10.1016/j.jtbi.2008.10.005
Pedro, S. A. et al. Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes. medRxiv (2020).
Greenhalgh, D. et al. Awareness programs control infectious disease—Multiple delay induced mathematical model.. Appl. Math. Comput. 251, 539–563 (2015).
Poletti, P., Ajelli, M. & Stefano, M. The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics. PLoS ONE 6, e16460 (2011).
pubmed: 21326878 pmcid: 3034726 doi: 10.1371/journal.pone.0016460
Teslya, A. et al. Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study. PLoS Med. 17, e1003166 (2020).
pubmed: 32692736 pmcid: 7373263 doi: 10.1371/journal.pmed.1003166
Mummert, A. & Weiss, H. Get the news out loudly and quickly: The influence of the media on limiting emerging infectious disease outbreaks. PLoS ONE 8, e71692 (2013).
pubmed: 23990974 pmcid: 3753329 doi: 10.1371/journal.pone.0071692
Agaba, G., Kyrychko, Y. & Blyuss, K. Mathematical model for the impact of awareness on the dynamics of infectious diseases. Math. Biosci. 286, 22–30 (2017).
pubmed: 28161305 doi: 10.1016/j.mbs.2017.01.009
Zhao, S. et al. Imitation dynamics in the mitigation of the novel coronavirus disease (COVID-19) outbreak in Wuhan, China from 2019 to 2020. Ann. Transl. Med. 8 (2020).
Córdova-Lepe, F., Cabrera Hernández, M. & Gutiérrez-Jara, J. P. Modeling the epidemiological impact of a preventive behavioral group. Medwave 18 (2018).
Karlsson, C.-J. & Rowlett, J. Decisions and disease: A mechanism for the evolution of cooperation. Sci. Rep. 10, 1–9 (2020).
doi: 10.1038/s41598-020-69546-2
Epstein, J. M., Parker, J., Cummings, D. & Hammond, R. A. Coupled contagion dynamics of fear and disease: Mathematical and computational explorations. PLoS ONE 3, e3955 (2008).
pubmed: 19079607 pmcid: 2596968 doi: 10.1371/journal.pone.0003955
Del Valle, S., Hethcote, H., Hyman, J. M. & Castillo-Chavez, C. Effects of behavioral changes in a smallpox attack model. Math. Biosci. 195, 228–251 (2005).
pubmed: 15913667 doi: 10.1016/j.mbs.2005.03.006
Pharaon, J. & Bauch, C. The influence of social behavior on competition between virulent pathogen strains. bioRxiv 293936 (2018).
Bauch, C. T. Imitation dynamics predict vaccinating behaviour. Proc. R. Soc. B Biol. Sci. 272, 1669–1675 (2005).
doi: 10.1098/rspb.2005.3153
Ferguson, N. et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce covid19 mortality and healthcare demand. (2020).
Ngonghala, C. N. et al. Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus. Math. Biosci. 325, 108364 (2020).
pubmed: 32360770 pmcid: 7252217 doi: 10.1016/j.mbs.2020.108364
Situación nacional de covid-19 en chile, ministerio de salud, gobierno de chile. https://www.gob.cl/coronavirus/cifrasoficiales/ (2021).
GitHub. https://github.com/JuanPabloGutie/CodePaperSR2022 .
Working from home: Estimating the worldwide potential, international labour organization. https://www.ilo.org/global/topics/non-standard-employment/publications/WCMS_743447/lang--en/index.htm (2021).
Child population by age group in the united states, kids count data center. https://datacenter.kidscount.org/data/tables/101-child-population-by-age-group (2021).
The great consumer shift: Ten charts that show how us shopping behavior is changing. https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/the-great-consumer-shift-ten-charts-that-show-how-us-shopping-behavior-is-changing# (2021).
Quarantine and isolation, CDC. https://www.cdc.gov/coronavirus/2019-ncov/your-health/quarantine-isolation.html (2021).

Auteurs

Juan Pablo Gutiérrez-Jara (JP)

Centro de Investigación de Estudios Avanzados del Maule (CIEAM), 3480112, Talca, Chile.
Universidad Católica del Maule, Vicerrectoria de Investigación y Postgrado, 3480112, Talca, Chile.

Katia Vogt-Geisse (K)

Universidad Adolfo Ibáñez, Facultad de Ingeniería y Ciencias, 7941169, Santiago, Chile. katia.vogt@uai.cl.

Maritza Cabrera (M)

Centro de Investigación de Estudios Avanzados del Maule (CIEAM), 3480112, Talca, Chile.
Universidad Católica del Maule, Vicerrectoria de Investigación y Postgrado, 3480112, Talca, Chile.

Fernando Córdova-Lepe (F)

Universidad Católica del Maule, Facultad de Ciencias Básicas, 3480112, Talca, Chile.

María Teresa Muñoz-Quezada (MT)

Faculty of Health Sciences, Universidad Católica del Maule, 3480112, Talca, Chile.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH