The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 06 2022
Historique:
received: 22 09 2021
accepted: 08 06 2022
entrez: 27 6 2022
pubmed: 28 6 2022
medline: 30 6 2022
Statut: epublish

Résumé

It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.

Identifiants

pubmed: 35760976
doi: 10.1038/s41467-022-31436-8
pii: 10.1038/s41467-022-31436-8
pmc: PMC9237031
doi:

Substances chimiques

RNA 63231-63-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

3690

Subventions

Organisme : NIMH NIH HHS
ID : U01 MH105669
Pays : United States
Organisme : NINDS NIH HHS
ID : R37 NS083524
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH115727
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Edelmann, L., Pandita, R. K. & Morrow, B. E. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am. J. Hum. Genet 64, 1076–1086 (1999).
pubmed: 10090893 pmcid: 1377832 doi: 10.1086/302343
Hoeffding, L. K. et al. Risk of Psychiatric Disorders Among Individuals With the 22q11.2 Deletion or Duplication: A Danish Nationwide, Register-Based Study. JAMA Psychiatry 74, 282–290 (2017).
pubmed: 28114601 doi: 10.1001/jamapsychiatry.2016.3939
Swillen, A. & McDonald-McGinn, D. Developmental trajectories in 22q11.2 deletion. Am. J. Med Genet C. Semin Med Genet 169, 172–181 (2015).
pubmed: 25989227 pmcid: 5061035 doi: 10.1002/ajmg.c.31435
Horowitz, A., Shifman, S., Rivlin, N., Pisante, A. & Darvasi, A. A survey of the 22q11 microdeletion in a large cohort of schizophrenia patients. Schizophr. Res 73, 263–267 (2005).
pubmed: 15653270 doi: 10.1016/j.schres.2004.02.008
Kates, W. R. et al. Neurocognitive and familial moderators of psychiatric risk in velocardiofacial (22q11.2 deletion) syndrome: a longitudinal study. Psychol. Med 45, 1629–1639 (2015).
pubmed: 25394491 doi: 10.1017/S0033291714002724
Monks, S. et al. Further evidence for high rates of schizophrenia in 22q11.2 deletion syndrome. Schizophr. Res 153, 231–236 (2014).
pubmed: 24534796 doi: 10.1016/j.schres.2014.01.020
Schneider, M. et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am. J. Psychiatry 171, 627–639 (2014).
pubmed: 24577245 pmcid: 4285461 doi: 10.1176/appi.ajp.2013.13070864
Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet 49, 27–35 (2017).
pubmed: 27869829 doi: 10.1038/ng.3725
Costales, J. L. & Kolevzon, A. Phelan-McDermid Syndrome and SHANK3: Implications for Treatment. Neurotherapeutics 12, 620–630 (2015).
pubmed: 25894671 pmcid: 4489957 doi: 10.1007/s13311-015-0352-z
Devaraju, P. et al. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol. Psychiatry 22, 1313–1326 (2017).
pubmed: 27184122 doi: 10.1038/mp.2016.75
Devaraju, P. & Zakharenko, S. S. Mitochondria in complex psychiatric disorders: Lessons from mouse models of 22q11.2 deletion syndrome: Hemizygous deletion of several mitochondrial genes in the 22q11.2 genomic region can lead to symptoms associated with neuropsychiatric disease. Bioessays 39, 201600177 (2017).
Diamantopoulou, A. et al. Loss-of-function mutation in Mirta22/Emc10 rescues specific schizophrenia-related phenotypes in a mouse model of the 22q11.2 deletion. Proc. Natl Acad. Sci. USA 114, E6127–E6136 (2017).
pubmed: 28696314 pmcid: 5544257 doi: 10.1073/pnas.1615719114
Fenelon, K. et al. Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 4447–4452 (2011).
pubmed: 21368174 pmcid: 3060227 doi: 10.1073/pnas.1101219108
Hsu, R. et al. Nogo Receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches. PLoS One 2, e1234 (2007).
pubmed: 18043741 pmcid: 2077930 doi: 10.1371/journal.pone.0001234
Karayiorgou, M. & Gogos, J. A. The molecular genetics of the 22q11-associated schizophrenia. Brain Res Mol. Brain Res 132, 95–104 (2004).
pubmed: 15582150 doi: 10.1016/j.molbrainres.2004.09.029
Kimura, H. et al. A novel rare variant R292H in RTN4R affects growth cone formation and possibly contributes to schizophrenia susceptibility. Transl. Psychiatry 7, e1214 (2017).
pubmed: 28892071 pmcid: 5611737 doi: 10.1038/tp.2017.170
Meechan, D. W., Maynard, T. M., Tucker, E. S. & LaMantia, A. S. Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: patterning, proliferation, and mitochondrial functions of 22q11 genes. Int J. Dev. Neurosci. 29, 283–294 (2011).
pubmed: 20833244 doi: 10.1016/j.ijdevneu.2010.08.005
Mukai, J. et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat. Genet 36, 725–731 (2004).
pubmed: 15184899 doi: 10.1038/ng1375
Paronett, E. M., Meechan, D. W., Karpinski, B. A., LaMantia, A. S. & Maynard, T. M. Ranbp1, Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation. Cereb. Cortex 25, 3977–3993 (2015).
pubmed: 25452572 doi: 10.1093/cercor/bhu285
Stark, K. L. et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat. Genet 40, 751–760 (2008).
pubmed: 18469815 doi: 10.1038/ng.138
Wang, X., Bryan, C., LaMantia, A. S. & Mendelowitz, D. Altered neurobiological function of brainstem hypoglossal neurons in DiGeorge/22q11.2 Deletion Syndrome. Neuroscience 359, 1–7 (2017).
pubmed: 28687307 doi: 10.1016/j.neuroscience.2017.06.057
Bassett, A. S. et al. Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome. Am. J. Psychiatry 174, 1054–1063 (2017).
pubmed: 28750581 pmcid: 5665703 doi: 10.1176/appi.ajp.2017.16121417
Bergen, S. E. et al. Joint Contributions of Rare Copy Number Variants and Common SNPs to Risk for Schizophrenia. Am J Psychiatry, appiajp201817040467, https://doi.org/10.1176/appi.ajp.2018.17040467 (2018).
Cleynen, I. et al. Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Mol Psychiatry, https://doi.org/10.1038/s41380-020-0654-3 (2020).
Davies, R. W. et al. Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nat Med 26, 1912–1918 (2020).
An, J. Y. et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362, aat6576 (2018).
Sanders, S. J. et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat. Neurosci. 20, 1661–1668 (2017).
pubmed: 29184211 pmcid: 7785336 doi: 10.1038/s41593-017-0017-9
Satterstrom, F. K. et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 180, 568–584 e523 (2020).
pubmed: 31981491 pmcid: 7250485 doi: 10.1016/j.cell.2019.12.036
Weiner, D. J. et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat. Genet 49, 978–985 (2017).
pubmed: 28504703 pmcid: 5552240 doi: 10.1038/ng.3863
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet 50, 621–629 (2018).
pubmed: 29632380 pmcid: 5896795 doi: 10.1038/s41588-018-0081-4
Koopmans, F. et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron 103, 217–234 e214 (2019).
pubmed: 31171447 pmcid: 6764089 doi: 10.1016/j.neuron.2019.05.002
Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
doi: 10.1038/nature13595
Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).
pubmed: 23764284 pmcid: 3751803 doi: 10.1016/j.neuron.2013.05.029
Nehme, R. et al. Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission. Cell Rep. 23, 2509–2523 (2018).
pubmed: 29791859 pmcid: 6003669 doi: 10.1016/j.celrep.2018.04.066
Wells M., et al. Genome-wide screens in accelerated human stem cellderived neural progenitor cells identify Zika virus host factors and drivers of proliferation. BioRxiv (2018).
Biswas, A. B. & Furniss, F. Cognitive phenotype and psychiatric disorder in 22q11.2 deletion syndrome: A review. Res Dev. Disabil. 53-54, 242–257 (2016).
pubmed: 26942704 doi: 10.1016/j.ridd.2016.02.010
Fiksinski, A. M. et al. Autism Spectrum and psychosis risk in the 22q11.2 deletion syndrome. Findings from a prospective longitudinal study. Schizophr. Res 188, 59–62 (2017).
pubmed: 28119035 pmcid: 5522359 doi: 10.1016/j.schres.2017.01.032
Zhao, Y. et al. Variance of IQ is partially dependent on deletion type among 1,427 22q11.2 deletion syndrome subjects. Am. J. Med Genet A 176, 2172–2181 (2018).
pubmed: 30289625 pmcid: 6209529 doi: 10.1002/ajmg.a.40359
Lin, M. et al. Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC Syst. Biol. 10, 105 (2016).
pubmed: 27846841 pmcid: 5111260 doi: 10.1186/s12918-016-0366-0
Khan, T. A. et al. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat Med, https://doi.org/10.1038/s41591-020-1043-9 (2020).
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
pubmed: 27535533 pmcid: 5018207 doi: 10.1038/nature19057
McDonald-McGinn, D. M. et al. 22q11.2 deletion syndrome. Nat. Rev. Dis. Prim. 1, 15071 (2015).
pubmed: 27189754 doi: 10.1038/nrdp.2015.71
Dantas, A. G. et al. Downregulation of genes outside the deleted region in individuals with 22q11.2 deletion syndrome. Hum. Genet 138, 93–103 (2019).
pubmed: 30627818 doi: 10.1007/s00439-018-01967-6
Deciphering Developmental Disorders, S. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).
doi: 10.1038/nature14135
Deciphering Developmental Disorders, S. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).
doi: 10.1038/nature21062
Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).
pubmed: 35396580 doi: 10.1038/s41586-022-04434-5
Yap, E. L. & Greenberg, M. E. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 100, 330–348 (2018).
pubmed: 30359600 pmcid: 6223657 doi: 10.1016/j.neuron.2018.10.013
Pane, L. S. et al. Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer. Dis Model Mech 11, dmm029967 (2018).
Pane, L. S. et al. Tbx1 is a negative modulator of Mef2c. Hum. Mol. Genet 21, 2485–2496 (2012).
pubmed: 22367967 pmcid: 3349424 doi: 10.1093/hmg/dds063
Rossin, E. J. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet 7, e1001273 (2011).
pubmed: 21249183 pmcid: 3020935 doi: 10.1371/journal.pgen.1001273
Nehme R. et al. The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia https://doi.org/10.5281/zenodo.6555972 (2022).
Li, T. et al. A scored human protein-protein interaction network to catalyze genomic interpretation. Nat. Methods 14, 61–64 (2017).
pubmed: 27892958 doi: 10.1038/nmeth.4083
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet 50, 1112–1121 (2018).
pubmed: 30038396 pmcid: 6393768 doi: 10.1038/s41588-018-0147-3
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet 51, 63–75 (2019).
pubmed: 30478444 doi: 10.1038/s41588-018-0269-7
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet 51, 431–444 (2019).
pubmed: 30804558 pmcid: 6454898 doi: 10.1038/s41588-019-0344-8
Psychiatric, G. C. B. D. W. G. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet 43, 977–983 (2011).
doi: 10.1038/ng.943
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet 50, 668–681 (2018).
pubmed: 29700475 pmcid: 5934326 doi: 10.1038/s41588-018-0090-3
Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet 50, 381–389 (2018).
pubmed: 29483656 pmcid: 5918692 doi: 10.1038/s41588-018-0059-2
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 11, e1004219 (2015).
pubmed: 25885710 pmcid: 4401657 doi: 10.1371/journal.pcbi.1004219
Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).
pubmed: 24463508 pmcid: 4136494 doi: 10.1038/nature12975
Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).
pubmed: 24463507 pmcid: 4237002 doi: 10.1038/nature12929
Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016).
pubmed: 27694994 pmcid: 5104192 doi: 10.1038/nn.4402
Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).
pubmed: 35396579 doi: 10.1038/s41586-022-04556-w
Singh, T. et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat. Genet 49, 1167–1173 (2017).
pubmed: 28650482 pmcid: 5533219 doi: 10.1038/ng.3903
Flavell, S. W. et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012 (2006).
pubmed: 16484497 doi: 10.1126/science.1122511
Flavell, S. W. et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022–1038 (2008).
pubmed: 19109909 pmcid: 2630178 doi: 10.1016/j.neuron.2008.11.029
Becher, A. et al. The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J. Neurosci. 19, 1922–1931 (1999).
pubmed: 10066245 pmcid: 6782579 doi: 10.1523/JNEUROSCI.19-06-01922.1999
Chang, W. P. & Sudhof, T. C. SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. J. Neurosci. 29, 883–897 (2009).
pubmed: 19176798 pmcid: 2693337 doi: 10.1523/JNEUROSCI.4521-08.2009
Mattheisen, M. et al. Genetic variation at the synaptic vesicle gene SV2A is associated with schizophrenia. Schizophr. Res 141, 262–265 (2012).
pubmed: 23017826 doi: 10.1016/j.schres.2012.08.027
Rujescu, D. et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum. Mol. Genet 18, 988–996 (2009).
pubmed: 18945720 doi: 10.1093/hmg/ddn351
Stefansson, H. et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 505, 361–366 (2014).
pubmed: 24352232 doi: 10.1038/nature12818
Inoue, S. et al. Synaptotagmin XI as a candidate gene for susceptibility to schizophrenia. Am. J. Med Genet B Neuropsychiatr. Genet 144B, 332–340 (2007).
pubmed: 17192956 doi: 10.1002/ajmg.b.30465
Lelieveld, S. H. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196 (2016).
pubmed: 27479843 doi: 10.1038/nn.4352
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, aat7615 (2018).
Forsyth, J. K. et al. Synaptic and Gene Regulatory Mechanisms in Schizophrenia, Autism, and 22q11.2 Copy Number Variant-Mediated Risk for Neuropsychiatric Disorders. Biol. Psychiatry 87, 150–163 (2020).
pubmed: 31500805 doi: 10.1016/j.biopsych.2019.06.029
Kahn, J. B., Port, R. G., Anderson, S. A. & Coulter, D. A. Modular, Circuit-Based Interventions Rescue Hippocampal-Dependent Social and Spatial Memory in a 22q11.2 Deletion Syndrome Mouse Model. Biol. Psychiatry 88, 710–718 (2020).
pubmed: 32682567 pmcid: 7554065 doi: 10.1016/j.biopsych.2020.04.028
Maynard, T. M. et al. Transcriptional dysregulation in developing trigeminal sensory neurons in the LgDel mouse model of DiGeorge 22q11.2 deletion syndrome. Hum. Mol. Genet 29, 1002–1017 (2020).
pubmed: 32047912 pmcid: 7158380 doi: 10.1093/hmg/ddaa024
Finnema, S. J. et al. Imaging synaptic density in the living human brain. Sci Transl Med 8, 348ra396, (2016).
Onwordi, E. C. et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun. 11, 246 (2020).
pubmed: 31937764 pmcid: 6959348 doi: 10.1038/s41467-019-14122-0
Ellegood, J. et al. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol. Psychiatry 19, 99–107 (2014).
pubmed: 23999526 doi: 10.1038/mp.2013.112
Long, J. M. et al. Behavior of mice with mutations in the conserved region deleted in velocardiofacial/DiGeorge syndrome. Neurogenetics 7, 247–257 (2006).
pubmed: 16900388 doi: 10.1007/s10048-006-0054-0
Mukai, J. et al. Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron 86, 680–695 (2015).
pubmed: 25913858 pmcid: 4603834 doi: 10.1016/j.neuron.2015.04.003
Meng, Q. et al. The DGCR5 long noncoding RNA may regulate expression of several schizophrenia-related genes. Sci Transl Med 10, https://doi.org/10.1126/scitranslmed.aat6912 (2018).
Guo, W. T. & Wang, Y. Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol. Life Sci. 76, 1697–1711 (2019).
pubmed: 30694346 doi: 10.1007/s00018-019-03020-9
Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
pubmed: 21593866 doi: 10.1038/nature10098
Tai, D. J. et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat. Neurosci. 19, 517–522 (2016).
pubmed: 26829649 pmcid: 4903018 doi: 10.1038/nn.4235
Zhang, X. et al. Local and global chromatin interactions are altered by large genomic deletions associated with human brain development. Nat. Commun. 9, 5356 (2018).
pubmed: 30559385 pmcid: 6297223 doi: 10.1038/s41467-018-07766-x
Busskamp, V. et al. Rapid neurogenesis through transcriptional activation in human stem cells. Mol. Syst. Biol. 10, 760 (2014).
pubmed: 25403753 pmcid: 4299601 doi: 10.15252/msb.20145508
Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).
pubmed: 19252484 pmcid: 2756723 doi: 10.1038/nbt.1529
Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).
pubmed: 21068831 pmcid: 4431554 doi: 10.1038/nature09612
Pfrieger, F. W. Roles of glial cells in synapse development. Cell. Mol. life Sci.: CMLS 66, 2037–2047 (2009).
pubmed: 19308323 doi: 10.1007/s00018-009-0005-7
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
pubmed: 22257669 pmcid: 3307112 doi: 10.1093/bioinformatics/bts034
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
pubmed: 24485249 pmcid: 4053721 doi: 10.1186/gb-2014-15-2-r29
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Hart, S. N., Therneau, T. M., Zhang, Y., Poland, G. A. & Kocher, J. P. Calculating sample size estimates for RNA sequencing data. J. Comput Biol. 20, 970–978 (2013).
pubmed: 23961961 pmcid: 3842884 doi: 10.1089/cmb.2012.0283
Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).
pubmed: 17098774 doi: 10.1093/bioinformatics/btl567
Beisser, D., Klau, G. W., Dandekar, T., Muller, T. & Dittrich, M. T. BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics 26, 1129–1130 (2010).
pubmed: 20189939 doi: 10.1093/bioinformatics/btq089
Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, T. & Muller, T. Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24, i223–i231 (2008).
pubmed: 18586718 pmcid: 2718639 doi: 10.1093/bioinformatics/btn161
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet 47, 1228–1235 (2015).
pubmed: 26414678 pmcid: 4626285 doi: 10.1038/ng.3404
Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat. Genet 49, 1421–1427 (2017).
pubmed: 28892061 pmcid: 6133304 doi: 10.1038/ng.3954
Kosmicki, J. A. et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet 49, 504–510 (2017).
pubmed: 28191890 pmcid: 5496244 doi: 10.1038/ng.3789
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
pubmed: 23287718 pmcid: 3795411 doi: 10.1126/science.1231143
Hazelbaker, D. Z. et al. A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease. Stem Cell Rep. 9, 1315–1327 (2017).
doi: 10.1016/j.stemcr.2017.09.006
Hwang, V. J. et al. Mapping the deletion endpoints in individuals with 22q11.2 deletion syndrome by droplet digital PCR. BMC Med Genet 15, 106 (2014).
pubmed: 25312060 pmcid: 4258952 doi: 10.1186/s12881-014-0106-5
Krzywinski, M. & Altman, N. Visualizing samples with box plots. Nat. methods 11, 119–120 (2014).
pubmed: 24645192 doi: 10.1038/nmeth.2813
McGill, R., Tukey, J. W. & Larsen, W. A. Variations of Box Plots. Am. Statistician 32, 12–16 (1978).
Streit, M. & Gehlenborg, N. Bar charts and box plots. Nat. methods 11, 117 (2014).
pubmed: 24645191 doi: 10.1038/nmeth.2807
Hutson, A. D. Calculating nonparametric confidence intervals for quantiles using fractional order statistics. J. Appl. Stat. 26, 343–353 (1999).
doi: 10.1080/02664769922458
McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).
pubmed: 24927332 pmcid: 4215866 doi: 10.1021/ac502040v

Auteurs

Ralda Nehme (R)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. rnehme@broadinstitute.org.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA. rnehme@broadinstitute.org.

Olli Pietiläinen (O)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. ollip@broadinstitute.org.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA. ollip@broadinstitute.org.

Mykyta Artomov (M)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.

Matthew Tegtmeyer (M)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Vera Valakh (V)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Leevi Lehtonen (L)

Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland.

Christina Bell (C)

Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA.

Tarjinder Singh (T)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Aditi Trehan (A)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

John Sherwood (J)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Danielle Manning (D)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Emily Peirent (E)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Rhea Malik (R)

Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Ellen J Guss (EJ)

Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Derek Hawes (D)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Amanda Beccard (A)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Anne M Bara (AM)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Dane Z Hazelbaker (DZ)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Emanuela Zuccaro (E)

Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Giulio Genovese (G)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Alexander A Loboda (AA)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
ITMO University, St. Petersburg, Russia.
Almazov National Medical Research Centre, Saint-Petersburg, Russia.

Anna Neumann (A)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Christina Lilliehook (C)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Outi Kuismin (O)

Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland.
Medical Research Center, Oulu University Hospital, FI-90014, Oulu, Finland.
Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland.

Eija Hamalainen (E)

Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland.

Mitja Kurki (M)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland.
Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.

Christina M Hultman (CM)

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.

Anna K Kähler (AK)

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.

Joao A Paulo (JA)

Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA.

Andrea Ganna (A)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Jon Madison (J)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Bruce Cohen (B)

Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA.

Donna McPhie (D)

Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA.

Rolf Adolfsson (R)

Umea University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry, 901 85, Umea, Sweden.

Roy Perlis (R)

Psychiatry Dept., Massachusetts General Hospital, Boston, MA, 02114, USA.

Ricardo Dolmetsch (R)

Novartis Institutes for Biomedical Research, Novartis, Cambridge, MA, 02139, USA.

Samouil Farhi (S)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Steven McCarroll (S)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Steven Hyman (S)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Ben Neale (B)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Lindy E Barrett (LE)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.

Wade Harper (W)

Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA.

Aarno Palotie (A)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland.
Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.

Mark Daly (M)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland.
Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.

Kevin Eggan (K)

Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. kevin.eggan@bmrn.com.
Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA. kevin.eggan@bmrn.com.
BioMarin Pharmaceutical, San Rafael, CA, 94901, USA. kevin.eggan@bmrn.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH