The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 06 2022
27 06 2022
Historique:
received:
22
09
2021
accepted:
08
06
2022
entrez:
27
6
2022
pubmed:
28
6
2022
medline:
30
6
2022
Statut:
epublish
Résumé
It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.
Identifiants
pubmed: 35760976
doi: 10.1038/s41467-022-31436-8
pii: 10.1038/s41467-022-31436-8
pmc: PMC9237031
doi:
Substances chimiques
RNA
63231-63-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3690Subventions
Organisme : NIMH NIH HHS
ID : U01 MH105669
Pays : United States
Organisme : NINDS NIH HHS
ID : R37 NS083524
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH115727
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Edelmann, L., Pandita, R. K. & Morrow, B. E. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am. J. Hum. Genet 64, 1076–1086 (1999).
pubmed: 10090893
pmcid: 1377832
doi: 10.1086/302343
Hoeffding, L. K. et al. Risk of Psychiatric Disorders Among Individuals With the 22q11.2 Deletion or Duplication: A Danish Nationwide, Register-Based Study. JAMA Psychiatry 74, 282–290 (2017).
pubmed: 28114601
doi: 10.1001/jamapsychiatry.2016.3939
Swillen, A. & McDonald-McGinn, D. Developmental trajectories in 22q11.2 deletion. Am. J. Med Genet C. Semin Med Genet 169, 172–181 (2015).
pubmed: 25989227
pmcid: 5061035
doi: 10.1002/ajmg.c.31435
Horowitz, A., Shifman, S., Rivlin, N., Pisante, A. & Darvasi, A. A survey of the 22q11 microdeletion in a large cohort of schizophrenia patients. Schizophr. Res 73, 263–267 (2005).
pubmed: 15653270
doi: 10.1016/j.schres.2004.02.008
Kates, W. R. et al. Neurocognitive and familial moderators of psychiatric risk in velocardiofacial (22q11.2 deletion) syndrome: a longitudinal study. Psychol. Med 45, 1629–1639 (2015).
pubmed: 25394491
doi: 10.1017/S0033291714002724
Monks, S. et al. Further evidence for high rates of schizophrenia in 22q11.2 deletion syndrome. Schizophr. Res 153, 231–236 (2014).
pubmed: 24534796
doi: 10.1016/j.schres.2014.01.020
Schneider, M. et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am. J. Psychiatry 171, 627–639 (2014).
pubmed: 24577245
pmcid: 4285461
doi: 10.1176/appi.ajp.2013.13070864
Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet 49, 27–35 (2017).
pubmed: 27869829
doi: 10.1038/ng.3725
Costales, J. L. & Kolevzon, A. Phelan-McDermid Syndrome and SHANK3: Implications for Treatment. Neurotherapeutics 12, 620–630 (2015).
pubmed: 25894671
pmcid: 4489957
doi: 10.1007/s13311-015-0352-z
Devaraju, P. et al. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol. Psychiatry 22, 1313–1326 (2017).
pubmed: 27184122
doi: 10.1038/mp.2016.75
Devaraju, P. & Zakharenko, S. S. Mitochondria in complex psychiatric disorders: Lessons from mouse models of 22q11.2 deletion syndrome: Hemizygous deletion of several mitochondrial genes in the 22q11.2 genomic region can lead to symptoms associated with neuropsychiatric disease. Bioessays 39, 201600177 (2017).
Diamantopoulou, A. et al. Loss-of-function mutation in Mirta22/Emc10 rescues specific schizophrenia-related phenotypes in a mouse model of the 22q11.2 deletion. Proc. Natl Acad. Sci. USA 114, E6127–E6136 (2017).
pubmed: 28696314
pmcid: 5544257
doi: 10.1073/pnas.1615719114
Fenelon, K. et al. Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 4447–4452 (2011).
pubmed: 21368174
pmcid: 3060227
doi: 10.1073/pnas.1101219108
Hsu, R. et al. Nogo Receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches. PLoS One 2, e1234 (2007).
pubmed: 18043741
pmcid: 2077930
doi: 10.1371/journal.pone.0001234
Karayiorgou, M. & Gogos, J. A. The molecular genetics of the 22q11-associated schizophrenia. Brain Res Mol. Brain Res 132, 95–104 (2004).
pubmed: 15582150
doi: 10.1016/j.molbrainres.2004.09.029
Kimura, H. et al. A novel rare variant R292H in RTN4R affects growth cone formation and possibly contributes to schizophrenia susceptibility. Transl. Psychiatry 7, e1214 (2017).
pubmed: 28892071
pmcid: 5611737
doi: 10.1038/tp.2017.170
Meechan, D. W., Maynard, T. M., Tucker, E. S. & LaMantia, A. S. Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: patterning, proliferation, and mitochondrial functions of 22q11 genes. Int J. Dev. Neurosci. 29, 283–294 (2011).
pubmed: 20833244
doi: 10.1016/j.ijdevneu.2010.08.005
Mukai, J. et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat. Genet 36, 725–731 (2004).
pubmed: 15184899
doi: 10.1038/ng1375
Paronett, E. M., Meechan, D. W., Karpinski, B. A., LaMantia, A. S. & Maynard, T. M. Ranbp1, Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation. Cereb. Cortex 25, 3977–3993 (2015).
pubmed: 25452572
doi: 10.1093/cercor/bhu285
Stark, K. L. et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat. Genet 40, 751–760 (2008).
pubmed: 18469815
doi: 10.1038/ng.138
Wang, X., Bryan, C., LaMantia, A. S. & Mendelowitz, D. Altered neurobiological function of brainstem hypoglossal neurons in DiGeorge/22q11.2 Deletion Syndrome. Neuroscience 359, 1–7 (2017).
pubmed: 28687307
doi: 10.1016/j.neuroscience.2017.06.057
Bassett, A. S. et al. Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome. Am. J. Psychiatry 174, 1054–1063 (2017).
pubmed: 28750581
pmcid: 5665703
doi: 10.1176/appi.ajp.2017.16121417
Bergen, S. E. et al. Joint Contributions of Rare Copy Number Variants and Common SNPs to Risk for Schizophrenia. Am J Psychiatry, appiajp201817040467, https://doi.org/10.1176/appi.ajp.2018.17040467 (2018).
Cleynen, I. et al. Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Mol Psychiatry, https://doi.org/10.1038/s41380-020-0654-3 (2020).
Davies, R. W. et al. Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nat Med 26, 1912–1918 (2020).
An, J. Y. et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362, aat6576 (2018).
Sanders, S. J. et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat. Neurosci. 20, 1661–1668 (2017).
pubmed: 29184211
pmcid: 7785336
doi: 10.1038/s41593-017-0017-9
Satterstrom, F. K. et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 180, 568–584 e523 (2020).
pubmed: 31981491
pmcid: 7250485
doi: 10.1016/j.cell.2019.12.036
Weiner, D. J. et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat. Genet 49, 978–985 (2017).
pubmed: 28504703
pmcid: 5552240
doi: 10.1038/ng.3863
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet 50, 621–629 (2018).
pubmed: 29632380
pmcid: 5896795
doi: 10.1038/s41588-018-0081-4
Koopmans, F. et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron 103, 217–234 e214 (2019).
pubmed: 31171447
pmcid: 6764089
doi: 10.1016/j.neuron.2019.05.002
Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
doi: 10.1038/nature13595
Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).
pubmed: 23764284
pmcid: 3751803
doi: 10.1016/j.neuron.2013.05.029
Nehme, R. et al. Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission. Cell Rep. 23, 2509–2523 (2018).
pubmed: 29791859
pmcid: 6003669
doi: 10.1016/j.celrep.2018.04.066
Wells M., et al. Genome-wide screens in accelerated human stem cellderived neural progenitor cells identify Zika virus host factors and drivers of proliferation. BioRxiv (2018).
Biswas, A. B. & Furniss, F. Cognitive phenotype and psychiatric disorder in 22q11.2 deletion syndrome: A review. Res Dev. Disabil. 53-54, 242–257 (2016).
pubmed: 26942704
doi: 10.1016/j.ridd.2016.02.010
Fiksinski, A. M. et al. Autism Spectrum and psychosis risk in the 22q11.2 deletion syndrome. Findings from a prospective longitudinal study. Schizophr. Res 188, 59–62 (2017).
pubmed: 28119035
pmcid: 5522359
doi: 10.1016/j.schres.2017.01.032
Zhao, Y. et al. Variance of IQ is partially dependent on deletion type among 1,427 22q11.2 deletion syndrome subjects. Am. J. Med Genet A 176, 2172–2181 (2018).
pubmed: 30289625
pmcid: 6209529
doi: 10.1002/ajmg.a.40359
Lin, M. et al. Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC Syst. Biol. 10, 105 (2016).
pubmed: 27846841
pmcid: 5111260
doi: 10.1186/s12918-016-0366-0
Khan, T. A. et al. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat Med, https://doi.org/10.1038/s41591-020-1043-9 (2020).
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
pubmed: 27535533
pmcid: 5018207
doi: 10.1038/nature19057
McDonald-McGinn, D. M. et al. 22q11.2 deletion syndrome. Nat. Rev. Dis. Prim. 1, 15071 (2015).
pubmed: 27189754
doi: 10.1038/nrdp.2015.71
Dantas, A. G. et al. Downregulation of genes outside the deleted region in individuals with 22q11.2 deletion syndrome. Hum. Genet 138, 93–103 (2019).
pubmed: 30627818
doi: 10.1007/s00439-018-01967-6
Deciphering Developmental Disorders, S. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).
doi: 10.1038/nature14135
Deciphering Developmental Disorders, S. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).
doi: 10.1038/nature21062
Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).
pubmed: 35396580
doi: 10.1038/s41586-022-04434-5
Yap, E. L. & Greenberg, M. E. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 100, 330–348 (2018).
pubmed: 30359600
pmcid: 6223657
doi: 10.1016/j.neuron.2018.10.013
Pane, L. S. et al. Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer. Dis Model Mech 11, dmm029967 (2018).
Pane, L. S. et al. Tbx1 is a negative modulator of Mef2c. Hum. Mol. Genet 21, 2485–2496 (2012).
pubmed: 22367967
pmcid: 3349424
doi: 10.1093/hmg/dds063
Rossin, E. J. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet 7, e1001273 (2011).
pubmed: 21249183
pmcid: 3020935
doi: 10.1371/journal.pgen.1001273
Nehme R. et al. The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia https://doi.org/10.5281/zenodo.6555972 (2022).
Li, T. et al. A scored human protein-protein interaction network to catalyze genomic interpretation. Nat. Methods 14, 61–64 (2017).
pubmed: 27892958
doi: 10.1038/nmeth.4083
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet 50, 1112–1121 (2018).
pubmed: 30038396
pmcid: 6393768
doi: 10.1038/s41588-018-0147-3
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet 51, 63–75 (2019).
pubmed: 30478444
doi: 10.1038/s41588-018-0269-7
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet 51, 431–444 (2019).
pubmed: 30804558
pmcid: 6454898
doi: 10.1038/s41588-019-0344-8
Psychiatric, G. C. B. D. W. G. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet 43, 977–983 (2011).
doi: 10.1038/ng.943
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet 50, 668–681 (2018).
pubmed: 29700475
pmcid: 5934326
doi: 10.1038/s41588-018-0090-3
Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet 50, 381–389 (2018).
pubmed: 29483656
pmcid: 5918692
doi: 10.1038/s41588-018-0059-2
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 11, e1004219 (2015).
pubmed: 25885710
pmcid: 4401657
doi: 10.1371/journal.pcbi.1004219
Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).
pubmed: 24463508
pmcid: 4136494
doi: 10.1038/nature12975
Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).
pubmed: 24463507
pmcid: 4237002
doi: 10.1038/nature12929
Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016).
pubmed: 27694994
pmcid: 5104192
doi: 10.1038/nn.4402
Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).
pubmed: 35396579
doi: 10.1038/s41586-022-04556-w
Singh, T. et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat. Genet 49, 1167–1173 (2017).
pubmed: 28650482
pmcid: 5533219
doi: 10.1038/ng.3903
Flavell, S. W. et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012 (2006).
pubmed: 16484497
doi: 10.1126/science.1122511
Flavell, S. W. et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022–1038 (2008).
pubmed: 19109909
pmcid: 2630178
doi: 10.1016/j.neuron.2008.11.029
Becher, A. et al. The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J. Neurosci. 19, 1922–1931 (1999).
pubmed: 10066245
pmcid: 6782579
doi: 10.1523/JNEUROSCI.19-06-01922.1999
Chang, W. P. & Sudhof, T. C. SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. J. Neurosci. 29, 883–897 (2009).
pubmed: 19176798
pmcid: 2693337
doi: 10.1523/JNEUROSCI.4521-08.2009
Mattheisen, M. et al. Genetic variation at the synaptic vesicle gene SV2A is associated with schizophrenia. Schizophr. Res 141, 262–265 (2012).
pubmed: 23017826
doi: 10.1016/j.schres.2012.08.027
Rujescu, D. et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum. Mol. Genet 18, 988–996 (2009).
pubmed: 18945720
doi: 10.1093/hmg/ddn351
Stefansson, H. et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 505, 361–366 (2014).
pubmed: 24352232
doi: 10.1038/nature12818
Inoue, S. et al. Synaptotagmin XI as a candidate gene for susceptibility to schizophrenia. Am. J. Med Genet B Neuropsychiatr. Genet 144B, 332–340 (2007).
pubmed: 17192956
doi: 10.1002/ajmg.b.30465
Lelieveld, S. H. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196 (2016).
pubmed: 27479843
doi: 10.1038/nn.4352
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, aat7615 (2018).
Forsyth, J. K. et al. Synaptic and Gene Regulatory Mechanisms in Schizophrenia, Autism, and 22q11.2 Copy Number Variant-Mediated Risk for Neuropsychiatric Disorders. Biol. Psychiatry 87, 150–163 (2020).
pubmed: 31500805
doi: 10.1016/j.biopsych.2019.06.029
Kahn, J. B., Port, R. G., Anderson, S. A. & Coulter, D. A. Modular, Circuit-Based Interventions Rescue Hippocampal-Dependent Social and Spatial Memory in a 22q11.2 Deletion Syndrome Mouse Model. Biol. Psychiatry 88, 710–718 (2020).
pubmed: 32682567
pmcid: 7554065
doi: 10.1016/j.biopsych.2020.04.028
Maynard, T. M. et al. Transcriptional dysregulation in developing trigeminal sensory neurons in the LgDel mouse model of DiGeorge 22q11.2 deletion syndrome. Hum. Mol. Genet 29, 1002–1017 (2020).
pubmed: 32047912
pmcid: 7158380
doi: 10.1093/hmg/ddaa024
Finnema, S. J. et al. Imaging synaptic density in the living human brain. Sci Transl Med 8, 348ra396, (2016).
Onwordi, E. C. et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun. 11, 246 (2020).
pubmed: 31937764
pmcid: 6959348
doi: 10.1038/s41467-019-14122-0
Ellegood, J. et al. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol. Psychiatry 19, 99–107 (2014).
pubmed: 23999526
doi: 10.1038/mp.2013.112
Long, J. M. et al. Behavior of mice with mutations in the conserved region deleted in velocardiofacial/DiGeorge syndrome. Neurogenetics 7, 247–257 (2006).
pubmed: 16900388
doi: 10.1007/s10048-006-0054-0
Mukai, J. et al. Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron 86, 680–695 (2015).
pubmed: 25913858
pmcid: 4603834
doi: 10.1016/j.neuron.2015.04.003
Meng, Q. et al. The DGCR5 long noncoding RNA may regulate expression of several schizophrenia-related genes. Sci Transl Med 10, https://doi.org/10.1126/scitranslmed.aat6912 (2018).
Guo, W. T. & Wang, Y. Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol. Life Sci. 76, 1697–1711 (2019).
pubmed: 30694346
doi: 10.1007/s00018-019-03020-9
Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
pubmed: 21593866
doi: 10.1038/nature10098
Tai, D. J. et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat. Neurosci. 19, 517–522 (2016).
pubmed: 26829649
pmcid: 4903018
doi: 10.1038/nn.4235
Zhang, X. et al. Local and global chromatin interactions are altered by large genomic deletions associated with human brain development. Nat. Commun. 9, 5356 (2018).
pubmed: 30559385
pmcid: 6297223
doi: 10.1038/s41467-018-07766-x
Busskamp, V. et al. Rapid neurogenesis through transcriptional activation in human stem cells. Mol. Syst. Biol. 10, 760 (2014).
pubmed: 25403753
pmcid: 4299601
doi: 10.15252/msb.20145508
Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).
pubmed: 19252484
pmcid: 2756723
doi: 10.1038/nbt.1529
Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).
pubmed: 21068831
pmcid: 4431554
doi: 10.1038/nature09612
Pfrieger, F. W. Roles of glial cells in synapse development. Cell. Mol. life Sci.: CMLS 66, 2037–2047 (2009).
pubmed: 19308323
doi: 10.1007/s00018-009-0005-7
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
pubmed: 22257669
pmcid: 3307112
doi: 10.1093/bioinformatics/bts034
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
pubmed: 24485249
pmcid: 4053721
doi: 10.1186/gb-2014-15-2-r29
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Hart, S. N., Therneau, T. M., Zhang, Y., Poland, G. A. & Kocher, J. P. Calculating sample size estimates for RNA sequencing data. J. Comput Biol. 20, 970–978 (2013).
pubmed: 23961961
pmcid: 3842884
doi: 10.1089/cmb.2012.0283
Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).
pubmed: 17098774
doi: 10.1093/bioinformatics/btl567
Beisser, D., Klau, G. W., Dandekar, T., Muller, T. & Dittrich, M. T. BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics 26, 1129–1130 (2010).
pubmed: 20189939
doi: 10.1093/bioinformatics/btq089
Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, T. & Muller, T. Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24, i223–i231 (2008).
pubmed: 18586718
pmcid: 2718639
doi: 10.1093/bioinformatics/btn161
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet 47, 1228–1235 (2015).
pubmed: 26414678
pmcid: 4626285
doi: 10.1038/ng.3404
Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat. Genet 49, 1421–1427 (2017).
pubmed: 28892061
pmcid: 6133304
doi: 10.1038/ng.3954
Kosmicki, J. A. et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet 49, 504–510 (2017).
pubmed: 28191890
pmcid: 5496244
doi: 10.1038/ng.3789
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
pubmed: 23287718
pmcid: 3795411
doi: 10.1126/science.1231143
Hazelbaker, D. Z. et al. A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease. Stem Cell Rep. 9, 1315–1327 (2017).
doi: 10.1016/j.stemcr.2017.09.006
Hwang, V. J. et al. Mapping the deletion endpoints in individuals with 22q11.2 deletion syndrome by droplet digital PCR. BMC Med Genet 15, 106 (2014).
pubmed: 25312060
pmcid: 4258952
doi: 10.1186/s12881-014-0106-5
Krzywinski, M. & Altman, N. Visualizing samples with box plots. Nat. methods 11, 119–120 (2014).
pubmed: 24645192
doi: 10.1038/nmeth.2813
McGill, R., Tukey, J. W. & Larsen, W. A. Variations of Box Plots. Am. Statistician 32, 12–16 (1978).
Streit, M. & Gehlenborg, N. Bar charts and box plots. Nat. methods 11, 117 (2014).
pubmed: 24645191
doi: 10.1038/nmeth.2807
Hutson, A. D. Calculating nonparametric confidence intervals for quantiles using fractional order statistics. J. Appl. Stat. 26, 343–353 (1999).
doi: 10.1080/02664769922458
McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).
pubmed: 24927332
pmcid: 4215866
doi: 10.1021/ac502040v