Microbiome Medicine: Microbiota in Development and Management of Cardiovascular Diseases.

Gut microbiome cardiovascular disease drugs gut dysbiosis heart failure metabolism synbiotics

Journal

Endocrine, metabolic & immune disorders drug targets
ISSN: 2212-3873
Titre abrégé: Endocr Metab Immune Disord Drug Targets
Pays: United Arab Emirates
ID NLM: 101269157

Informations de publication

Date de publication:
2022
Historique:
received: 27 01 2022
revised: 27 04 2022
accepted: 10 05 2022
pubmed: 29 6 2022
medline: 22 12 2022
entrez: 28 6 2022
Statut: ppublish

Résumé

The gut microbiome consists of trillions of bacteria and other microbes whose metabolic activities and interactions with the immune system go beyond the gut itself. We are all aware that bacteria and other microorganisms have a significant impact on our health. Also, the health of the bacteria directly reflects the health status of the body where they reside. Eventually, alterations in the microbiome at different sites of a body are associated with many different diseases such as obesity, IBD, malnutrition, CVD, etc. Microbiota directly or indirectly affects the heart with the formation of plaques in the blood vessels, and cell walls become prone to lesion development. This ultimately leads to heightening the overall inflammatory status via increased bacterial translocation. Metabolites derived from the gut microbial metabolism of choline, phosphatidylcholine, and L-carnitine directly contribute to CVD pathology. These dietary nutrients have trimethylamine (TMA) moiety, which participates in the development of atherosclerotic heart disease. The objective of this review was to examine various metabolic pathways regulated by the gut microbiome that appear to alter heart function and lead to the development and progression of cardiovascular diseases, as well as how to target the gut microbiome for a healthier heart. In this review, we also discussed various clinical drugs having crosstalk between microbiota and heart and clinical trials for the gut-heart microbiome.

Identifiants

pubmed: 35761484
pii: EMIDDT-EPUB-124787
doi: 10.2174/1871530322666220624161712
doi:

Types de publication

Review Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1344-1356

Informations de copyright

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.

Références

Wang J.; Ji H.; Influence of probiotics on dietary protein digestion and utilization in the gastrointestinal tract. Curr Protein Pept Sci 2019,20(2),125-131
doi: 10.2174/1389203719666180517100339 pubmed: 29769003
Lallès J.; Intestinal alkaline phosphatase in the gastrointestinal tract of fish: Biology, ontogeny, and environmental and nutritional modulation. Rev Aquacult 2020,12(2),555-581
doi: 10.1111/raq.12340
Davila A.M.; Blachier F.; Gotteland M.; Andriamihaja M.; Benetti P.H.; Sanz Y.; Tomé D.; Re-print of “Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host”. Pharmacol Res 2013,69(1),114-126
doi: 10.1016/j.phrs.2013.01.003 pubmed: 23318949
Bouter K.E.; van Raalte D.H.; Groen A.K.; Nieuwdorp M.; Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology 2017,152(7),1671-1678
doi: 10.1053/j.gastro.2016.12.048 pubmed: 28192102
Tlaskalová-Hogenová H.; Stěpánková, R.; Kozáková, H.; Hudcovic, T.; Vannucci, L.; Tučková, L.; Rossmann, P.; Hrnčíř, T.; Kverka, M.; Zákostelská, Z.; Klimešová, K.; Přibylová, J.; Bártová, J.; Sanchez, D.; Fundová, P.; Borovská, D.; Srůtková, D.; Zídek, Z.; Schwarzer, M.; Drastich, P.; Funda, D.P. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 2011,8(2),110-120
doi: 10.1038/cmi.2010.67 pubmed: 21278760
Verdugo-Meza A.; Ye J.; Dadlani H.; Ghosh S.; Gibson D.L.; Connecting the dots between inflammatory bowel disease and metabolic syndrome: A focus on gut-derived metabolites. Nutrients 2020,12(5),1434
doi: 10.3390/nu12051434 pubmed: 32429195
Kau A.L.; Ahern P.P.; Griffin N.W.; Goodman A.L.; Gordon J.I.; Human nutrition, the gut microbiome and the immune system. Nature 2011,474(7351),327-336
doi: 10.1038/nature10213 pubmed: 21677749
Goodrich J.K.; Davenport E.R.; Clark A.G.; Ley R.E.; The relationship between the human genome and microbiome comes into view. Annu Rev Genet 2017,51,413-433
doi: 10.1146/annurev-genet-110711-155532 pubmed: 28934590
Jeong Y.; Kim J.W.; You H.J.; Park S.J.; Lee J.; Ju J.H.; Park M.S.; Jin H.; Cho M.L.; Kwon B.; Park S.H.; Ji G.E.; Gut microbial composition and function are altered in patients with early rheumatoid arthritis. J Clin Med 2019,8(5),693
doi: 10.3390/jcm8050693 pubmed: 31100891
Sencio V.; Machado M.G.; Trottein F.; The lung-gut axis during viral respiratory infections: The impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol 2021,14(2),296-304
doi: 10.1038/s41385-020-00361-8 pubmed: 33500564
Carding S.; Verbeke K.; Vipond D.T.; Corfe B.M.; Owen L.J.; Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015,26(1),26191
pubmed: 25651997
Singh R.K.; Chang H.W.; Yan D.; Lee K.M.; Ucmak D.; Wong K.; Abrouk M.; Farahnik B.; Nakamura M.; Zhu T.H.; Bhutani T.; Liao W.; Influence of diet on the gut microbiome and implications for human health. J Transl Med 2017,15(1),73
doi: 10.1186/s12967-017-1175-y pubmed: 28388917
Tang W.H.W.; Kitai T.; Hazen S.L.; Gut microbiota in cardiovascular health and disease. Circ Res 2017,120(7),1183-1196
doi: 10.1161/CIRCRESAHA.117.309715 pubmed: 28360349
Savarese G.; Lund L.H.; Global public health burden of heart failure. Card Fail Rev 2017,3(1),7-11
doi: 10.15420/cfr.2016:25:2 pubmed: 28785469
World Health Organisation Cardiovasc. Dis., 2017. Available from:
Velasquez M.T.; Centron P.; Barrows I.; Dwivedi R.; Raj D.S.; Gut microbiota and cardiovascular uremic toxicities. Toxins (Basel) 2018,10(7),287
doi: 10.3390/toxins10070287 pubmed: 29997362
Ahmad A.F.; Ward N.C.; Dwivedi G.; The gut microbiome and heart failure. Curr Opin Cardiol 2019,34(2),225-232
doi: 10.1097/HCO.0000000000000598 pubmed: 30575647
Sekirov I.; Russell S.L.; Antunes L.C.M.; Finlay B.B.; Gut microbiota in health and disease. Physiol Rev 2010,90(3),859-904
doi: 10.1152/physrev.00045.2009 pubmed: 20664075
Camilleri M.; Lyle B.J.; Madsen K.L.; Sonnenburg J.; Verbeke K.; Wu G.D.; Role for diet in normal gut barrier function: Developing guidance within the framework of food-labeling regulations. Am J Physiol Gastrointest Liver Physiol 2019,317(1),G17-G39
doi: 10.1152/ajpgi.00063.2019 pubmed: 31125257
Sircana A.; De Michieli F.; Parente R.; Framarin L.; Leone N.; Berrutti M.; Paschetta E.; Bongiovanni D.; Musso G.; Gut microbiota, hypertension and chronic kidney disease: Recent advances. Pharmacol Res 2019,144,390-408
doi: 10.1016/j.phrs.2018.01.013 pubmed: 29378252
Khosravi A.; Yáñez A.; Price J.G.; Chow A.; Merad M.; Goodridge H.S.; Mazmanian S.K.; Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014,15(3),374-381
doi: 10.1016/j.chom.2014.02.006 pubmed: 24629343
Belizário J.E.; Faintuch J.; Microbiome and gut dysbiosis. In: Silvestre, R.; Torrado, E.; Eds. Metabolic Interaction in Infection Springer: Cham, 2018, pp. 459-476
doi: 10.1007/978-3-319-74932-7_13
Sandek A.; Bauditz J.; Swidsinski A.; Buhner S.; Weber-Eibel J.; von Haehling S.; Schroedl W.; Karhausen T.; Doehner W.; Rauchhaus M.; Poole-Wilson P.; Volk H.D.; Lochs H.; Anker S.D.; Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 2007,50(16),1561-1569
doi: 10.1016/j.jacc.2007.07.016 pubmed: 17936155
Sandek A.; Haehling S.D.A.; von, S The gut and intestinal bacteria in chronic heart failure. Current Drug Metabolism 2009,10,22-28
Charlet R.; Bortolus C.; Barbet M.; Sendid B.; Jawhara S.; A decrease in anaerobic bacteria promotes Candida glabrata overgrowth while β-glucan treatment restores the gut microbiota and attenuates colitis. Gut Pathog 2018,10(1),50
doi: 10.1186/s13099-018-0277-2 pubmed: 30524506
Yu M.; Jia H.; Zhou C.; Yang Y.; Zhao Y.; Yang M.; Zou Z.; Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal 2017,138,231-239
doi: 10.1016/j.jpba.2017.02.008 pubmed: 28219800
Kamo T.; Akazawa H.; Suda W.; Saga-Kamo A.; Shimizu Y.; Yagi H.; Liu Q.; Nomura S.; Naito A.T.; Takeda N.; Harada M.; Toko H.; Kumagai H.; Ikeda Y.; Takimoto E.; Suzuki J.I.; Honda K.; Morita H.; Hattori M.; Komuro I.; Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One 2017,12(3),e0174099
doi: 10.1371/journal.pone.0174099 pubmed: 28328981
Tang W.H.W.; Wang Z.; Levison B.S.; Koeth R.A.; Britt E.B.; Fu X.; Wu Y.; Hazen S.L.; Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013,368(17),1575-1584
doi: 10.1056/NEJMoa1109400 pubmed: 23614584
Tang W.H.W.; Wang Z.; Fan Y.; Levison B.; Hazen J.E.; Donahue L.M.; Wu Y.; Hazen S.L.; Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J Am Coll Cardiol 2014,64(18),1908-1914
doi: 10.1016/j.jacc.2014.02.617 pubmed: 25444145
Shimokawa H.; Miura M.; Nochioka K.; Sakata Y.; Heart failure as a general pandemic in Asia. Eur J Heart Fail 2015,17(9),884-892
doi: 10.1002/ejhf.319 pubmed: 26222508
Karlsson F.H.; Fåk F.; Nookaew I.; Tremaroli V.; Fagerberg B.; Petranovic D.; Bäckhed F.; Nielsen J.; Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012,3,1245
doi: 10.1038/ncomms2266 pubmed: 23212374
Emoto T.; Yamashita T.; Sasaki N.; Hirota Y.; Hayashi T.; So A.; Kasahara K.; Yodoi K.; Matsumoto T.; Mizoguchi T.; Ogawa W.; Hirata K.; Analysis of gut microbiota in coronary artery disease patients: A possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb 2016,23(8),908-921
doi: 10.5551/jat.32672 pubmed: 26947598
Jie Z.; Xia H.; Zhong S.L.; Feng Q.; Li S.; Liang S.; Zhong H.; Liu Z.; Gao Y.; Zhao H.; Zhang D.; Su Z.; Fang Z.; Lan Z.; Li J.; Xiao L.; Li J.; Li R.; Li X.; Li F.; Ren H.; Huang Y.; Peng Y.; Li G.; Wen B.; Dong B.; Chen J.Y.; Geng Q.S.; Zhang Z.W.; Yang H.; Wang J.; Wang J.; Zhang X.; Madsen L.; Brix S.; Ning G.; Xu X.; Liu X.; Hou Y.; Jia H.; He K.; Kristiansen K.; The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017,8(1),845
doi: 10.1038/s41467-017-00900-1 pubmed: 29018189
Fåk F.; Tremaroli V.; Bergström G.; Bäckhed F.; Oral microbiota in patients with atherosclerosis. Atherosclerosis 2015,243(2),573-578
doi: 10.1016/j.atherosclerosis.2015.10.097 pubmed: 26536303
Lv L.X.; Fang D.Q.; Shi D.; Chen D.Y.; Yan R.; Zhu Y.X.; Chen Y.F.; Shao L.; Guo F.F.; Wu W.R.; Li A.; Shi H.Y.; Jiang X.W.; Jiang H.Y.; Xiao Y.H.; Zheng S.S.; Li L.J.; Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol 2016,18(7),2272-2286
doi: 10.1111/1462-2920.13401 pubmed: 27243236
Jonsson A.L.; Bäckhed F.; Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 2017,14(2),79-87
doi: 10.1038/nrcardio.2016.183 pubmed: 27905479
Priyamvara A.; Dey A.K.; Bandyopadhyay D.; Katikineni V.; Zaghlol R.; Basyal B.; Barssoum K.; Amarin R.; Bhatt D.L.; Lavie C.J.; Periodontal inflammation and the risk of cardiovascular disease. Curr Atheroscler Rep 2020,22(7),28
doi: 10.1007/s11883-020-00848-6 pubmed: 32514778
Astbury S.; Atallah E.; Vijay A.; Aithal G.P.; Grove J.I.; Valdes A.M.; Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 2020,11(3),569-580
doi: 10.1080/19490976.2019.1681861 pubmed: 31696774
Rinninella E.; Raoul P.; Cintoni M.; Franceschi F.; Miggiano G.A.D.; Gasbarrini A.; Mele M.C.; What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019,7(1),14
doi: 10.3390/microorganisms7010014 pubmed: 30634578
Amabebe E.; Robert F.O.; Agbalalah T.; Orubu E.S.F.; Microbial dysbiosis-induced obesity: Role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr 2020,123(10),1127-1137
doi: 10.1017/S0007114520000380 pubmed: 32008579
Cox A.J.; West N.P.; Cripps A.W.; Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 2015,3(3),207-215
doi: 10.1016/S2213-8587(14)70134-2 pubmed: 25066177
Tilg H.; Zmora N.; Adolph T.E.; Elinav E.; The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol 2020,20(1),40-54
doi: 10.1038/s41577-019-0198-4 pubmed: 31388093
Komaroff A.L.; The microbiome and risk for atherosclerosis. JAMA 2018,319(23),2381-2382
doi: 10.1001/jama.2018.5240 pubmed: 29800043
Zinöcker M.K.; Lindseth I.A.; The Western diet–microbiome-host interaction and its role in metabolic disease. Nutrients 2018,10(3),365
doi: 10.3390/nu10030365 pubmed: 29562591
De Filippis F.; Pellegrini N.; Vannini L.; Jeffery I.B.; La Storia A.; Laghi L.; Serrazanetti D.I.; Di Cagno R.; Ferrocino I.; Lazzi C.; Turroni S.; Cocolin L.; Brigidi P.; Neviani E.; Gobbetti M.; O’Toole P.W.; Ercolini D.; High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016,65(11),1812-1821
doi: 10.1136/gutjnl-2015-309957 pubmed: 26416813
Morera L.P.; Marchiori G.N.; Medrano L.A.; Defagó M.D.; Stress, dietary patterns and cardiovascular disease: A mini-review. Front Neurosci 2019,13,1226
doi: 10.3389/fnins.2019.01226 pubmed: 31780892
Laugerette F.; Furet J.P.; Debard C.; Daira P.; Loizon E.; Géloën A.; Soulage C.O.; Simonet C.; Lefils-Lacourtablaise J.; Bernoud-Hubac N.; Bodennec J.; Peretti N.; Vidal H.; Michalski M.C.; Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice. Am J Physiol Endocrinol Metab 2012,302(3),E374-E386
doi: 10.1152/ajpendo.00314.2011 pubmed: 22094473
Forkosh E.; Ilan Y.; The heart-gut axis: New target for atherosclerosis and congestive heart failure therapy. Open Heart 2019,6(1),e000993
doi: 10.1136/openhrt-2018-000993 pubmed: 31168383
Tang W.H.W.; Bäckhed F.; Landmesser U.; Hazen S.L.; Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol 2019,73(16),2089-2105
doi: 10.1016/j.jacc.2019.03.024 pubmed: 31023434
Scarmozzino F.; Poli A.; Visioli F.; Microbiota and cardiovascular disease risk: A scoping review. Pharmacol Res 2020,159,104952
doi: 10.1016/j.phrs.2020.104952 pubmed: 32492487
Tang W.H.W.; Hazen S.L.; The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 2014,124(10),4204-4211
doi: 10.1172/JCI72331 pubmed: 25271725
Roberts A.B.; Gu X.; Buffa J.A.; Hurd A.G.; Wang Z.; Zhu W.; Gupta N.; Skye S.M.; Cody D.B.; Levison B.S.; Barrington W.T.; Russell M.W.; Reed J.M.; Duzan A.; Lang J.M.; Fu X.; Li L.; Myers A.J.; Rachakonda S.; DiDonato J.A.; Brown J.M.; Gogonea V.; Lusis A.J.; Garcia-Garcia J.C.; Hazen S.L.; Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 2018,24(9),1407-1417
doi: 10.1038/s41591-018-0128-1 pubmed: 30082863
Wang Z.; Bergeron N.; Levison B.S.; Li X.S.; Chiu S.; Jia X.; Koeth R.A.; Li L.; Wu Y.; Tang W.H.W.; Krauss R.M.; Hazen S.L.; Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J 2019,40(7),583-594
doi: 10.1093/eurheartj/ehy799 pubmed: 30535398
Chen X.; Li H.Y.; Hu X.M.; Zhang Y.; Zhang S.Y.; Current understanding of gut microbiota alterations and related therapeutic intervention strategies in heart failure. Chin Med J (Engl) 2019,132(15),1843-1855
doi: 10.1097/CM9.0000000000000330 pubmed: 31306229
Zeisel S.H.; Warrier M.; Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 2017,37,157-181
doi: 10.1146/annurev-nutr-071816-064732 pubmed: 28715991
Canyelles M.; Tondo M.; Cedó L.; Farràs M.; Escolà-Gil J.C.; Blanco-Vaca F.; Trimethylamine N-oxide: A link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int J Mol Sci 2018,19(10),3228
doi: 10.3390/ijms19103228 pubmed: 30347638
Van Parys A.; Lysne V.; Øyen J.; Dierkes J.; Nygård O.; No effect of plasma trimethylamine N-Oxide (TMAO) and plasma trimethyllysine (TML) on the association between choline intake and acute myocardial infarction risk in patients with stable angina pectoris. Human Nutr Metabol 2020,21,200112
doi: 10.1016/j.hnm.2020.200112
Tang W.H.W.; Hazen S.L.; Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl Res 2017,179,108-115
doi: 10.1016/j.trsl.2016.07.007 pubmed: 27490453
Nowiński, A.; Ufnal, M. Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases? Nutrition 2018,46,7-12
doi: 10.1016/j.nut.2017.08.001 pubmed: 29290360
Trøseid M.; Ueland T.; Hov J.R.; Svardal A.; Gregersen I.; Dahl C.P.; Aakhus S.; Gude E.; Bjørndal B.; Halvorsen B.; Karlsen T.H.; Aukrust P.; Gullestad L.; Berge R.K.; Yndestad A.; Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 2015,277(6),717-726
doi: 10.1111/joim.12328 pubmed: 25382824
Bach Knudsen K.E.; Lærke H.N.; Hedemann M.S.; Nielsen T.S.; Ingerslev A.K.; Gundelund Nielsen D.S.; Theil P.K.; Purup S.; Hald S.; Schioldan A.G.; Marco M.L.; Gregersen S.; Hermansen K.; Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 2018,10(10),1499
doi: 10.3390/nu10101499 pubmed: 30322146
Parada Venegas D.; De la Fuente M.K.; Landskron G.; González M.J.; Quera R.; Dijkstra G.; Harmsen H.J.M.; Faber K.N.; Hermoso M.A.; Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019,10,277
doi: 10.3389/fimmu.2019.00277 pubmed: 30915065
Chen J.; Vitetta L.; The role of butyrate in attenuating pathobiont-induced hyperinflammation. Immune Netw 2020,20(2),e15
doi: 10.4110/in.2020.20.e15 pubmed: 32395367
Bischoff S.C.; Barbara G.; Buurman W.; Ockhuizen T.; Schulzke J.D.; Serino M.; Tilg H.; Watson A.; Wells J.M.; Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol 2014,14(1),189
doi: 10.1186/s12876-014-0189-7 pubmed: 25407511
Trøseid M.; Andersen G.Ø.; Broch K.; Hov J.R.; The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine 2020,52,102649
doi: 10.1016/j.ebiom.2020.102649 pubmed: 32062353
Yoo J.Y.; Groer M.; Dutra S.V.O.; Sarkar A.; McSkimming D.I.; Gut microbiota and immune system interactions. Microorganisms 2020,8(10),1587
doi: 10.3390/microorganisms8101587 pubmed: 33076307
Fang W.; Xue H.; Chen X.; Chen K.; Ling W.; Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice. J Nutr 2019,149(5),747-754
doi: 10.1093/jn/nxy324 pubmed: 31004166
Mafra D.; Lobo J.C.; Barros A.F.; Koppe L.; Vaziri N.D.; Fouque D.; Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol 2014,9(3),399-410
doi: 10.2217/fmb.13.165 pubmed: 24762311
Mirzaeian S.; Saraf-Bank S.; Entezari M.H.; Hekmatdoost A.; Feizi A.; Atapour A.; Effects of synbiotic supplementation on microbiota-derived protein-bound uremic toxins, systemic inflammation, and biochemical parameters in patients on hemodialysis: A double-blind, placebo-controlled, randomized clinical trial. Nutrition 2020,73,110713
doi: 10.1016/j.nut.2019.110713 pubmed: 32120316
Filipska I.; Winiarska A.; Knysak M.; Stompór T.; Contribution of gut microbiota-derived uremic toxins to the cardiovascular system mineralization. Toxins (Basel) 2021,13(4),274
doi: 10.3390/toxins13040274 pubmed: 33920096
Sallée M.; Dou L.; Cerini C.; Poitevin S.; Brunet P.; Burtey S.; The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: A new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel) 2014,6(3),934-949
doi: 10.3390/toxins6030934 pubmed: 24599232
Lekawanvijit S.; Cardiotoxicity of uremic toxins: A driver of cardiorenal syndrome. Toxins (Basel) 2018,10(9),352
doi: 10.3390/toxins10090352 pubmed: 30200452
Mishra A.K.; Dubey V.; Ghosh A.R.; Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism 2016,65(1),48-65
doi: 10.1016/j.metabol.2015.10.008 pubmed: 26683796
Chambers E.S.; Preston T.; Frost G.; Morrison D.J.; Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 2018,7(4),198-206
doi: 10.1007/s13668-018-0248-8 pubmed: 30264354
Sente T.; Van Berendoncks A.M.; Hoymans V.Y.; Vrints C.J.; Adiponectin resistance in skeletal muscle: pathophysiological implications in chronic heart failure. J Cachexia Sarcopenia Muscle 2016,7(3),261-274
doi: 10.1002/jcsm.12086 pubmed: 27239409
Wang Y.; Ma X.L.; Lau W.B.; Cardiovascular adiponectin resistance: The critical role of adiponectin receptor modification. Trends Endocrinol Metab 2017,28(7),519-530
doi: 10.1016/j.tem.2017.03.004 pubmed: 28473178
Luedde M.; Winkler T.; Heinsen F.A.; Rühlemann M.C.; Spehlmann M.E.; Bajrovic A.; Lieb W.; Franke A.; Ott S.J.; Frey N.; Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail 2017,4(3),282-290
doi: 10.1002/ehf2.12155 pubmed: 28772054
Cui X.; Ye L.; Li J.; Jin L.; Wang W.; Li S.; Bao M.; Wu S.; Li L.; Geng B.; Zhou X.; Zhang J.; Cai J.; Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 2018,8(1),635
doi: 10.1038/s41598-017-18756-2 pubmed: 29330424
Pasini E.; Aquilani R.; Testa C.; Baiardi P.; Angioletti S.; Boschi F.; Verri M.; Dioguardi F.; Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 2016,4(3),220-227
doi: 10.1016/j.jchf.2015.10.009 pubmed: 26682791
Luedde M.; Spehlmann M.E.; Frey N.; Progress in heart failure treatment in Germany. Clin Res Cardiol 2018,107(2)(Suppl. 2),105-113
doi: 10.1007/s00392-018-1317-0 pubmed: 29968196
Sánchez B.; Delgado S.; Blanco-Míguez A.; Lourenço A.; Gueimonde M.; Margolles A.; Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 2017,61(1),1600240
doi: 10.1002/mnfr.201600240 pubmed: 27500859
Martín R.; Langella P.; Emerging health concepts in the probiotics field: Streamlining the definitions. Front Microbiol 2019,10,1047
doi: 10.3389/fmicb.2019.01047 pubmed: 31164874
Kothari D.; Patel S.; Kim S.K.; Probiotic supplements might not be universally-effective and safe: A review. Biomed Pharmacother 2019,111,537-547
doi: 10.1016/j.biopha.2018.12.104 pubmed: 30597307
Voidarou C.; Antoniadou, Μ; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods 2020,10(1),69
doi: 10.3390/foods10010069 pubmed: 33396397
Solas M.; Milagro F.I.; Ramírez M.J.; Martínez J.A.; Inflammation and gut-brain axis link obesity to cognitive dysfunction: Plausible pharmacological interventions. Curr Opin Pharmacol 2017,37,87-92
doi: 10.1016/j.coph.2017.10.005 pubmed: 29107872
Oniszczuk A.; Oniszczuk T.; Gancarz M.; Szymańska, J. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases. Molecules 2021,26(4),1172
doi: 10.3390/molecules26041172 pubmed: 33671813
Kleerebezem M.; Vaughan E.E.; Probiotic and gut lactobacilli and bifidobacteria: Molecular approaches to study diversity and activity. Annu Rev Microbiol 2009,63,269-290
doi: 10.1146/annurev.micro.091208.073341 pubmed: 19575569
Sekhon B.S.; Jairath S.; Prebiotics, probiotics and synbiotics: An overview. J Pharm Edu Res 2010,1(2),13-36
Markowiak P.; Śliżewska, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog 2018,10(1),21
doi: 10.1186/s13099-018-0250-0 pubmed: 29930711
Sanders M.E.; Merenstein D.J.; Reid G.; Gibson G.R.; Rastall R.A.; Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat Rev Gastroenterol Hepatol 2019,16(10),605-616
doi: 10.1038/s41575-019-0173-3 pubmed: 31296969
Liu Y.; Alookaran J.J.; Rhoads J.M.; Probiotics in autoimmune and inflammatory disorders. Nutrients 2018,10(10),1537
doi: 10.3390/nu10101537 pubmed: 30340338
Moludi J.; Alizadeh M.; Davari M.; Golmohammadi A.; Maleki V.; The efficacy and safety of probiotics intervention in attenuating cardiac remodeling following myocardial infraction: Literature review and study protocol for a randomized, double-blinded, placebo controlled trial. Contemp Clin Trials Commun 2019,15,100364
doi: 10.1016/j.conctc.2019.100364 pubmed: 31193187
Gan X.T.; Ettinger G.; Huang C.X.; Burton J.P.; Haist J.V.; Rajapurohitam V.; Sidaway J.E.; Martin G.; Gloor G.B.; Swann J.R.; Reid G.; Karmazyn M.; Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail 2014,7(3),491-499
doi: 10.1161/CIRCHEARTFAILURE.113.000978 pubmed: 24625365
Lam V.; Su J.; Koprowski S.; Hsu A.; Tweddell J.S.; Rafiee P.; Gross G.J.; Salzman N.H.; Baker J.E.; Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 2012,26(4),1727-1735
doi: 10.1096/fj.11-197921 pubmed: 22247331
Costanza A.C.; Moscavitch S.D.; Faria Neto H.C.C.; Mesquita E.T.; Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol 2015,179,348-350
doi: 10.1016/j.ijcard.2014.11.034
Gómez-Guzmán M.; Toral M.; Romero M.; Jiménez R.; Galindo P.; Sánchez M.; Zarzuelo M.J.; Olivares M.; Gálvez J.; Duarte J.; Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res 2015,59(11),2326-2336
doi: 10.1002/mnfr.201500290 pubmed: 26255877
Sarkar D.; Ankolekar C.; Shetty K.; Functional food components for preventing and combating type 2 diabetes. In: Patil, B.S.; Jayaprakasha, G.K.; Murthy, K.N.C.; Seeram, N.P.; Eds. Emerging Trends in Dietary Components for Preventing and Combating Disease ACS Publications: Wasgington DC, 2012, pp. 345-374.
doi: 10.1021/bk-2012-1093.ch020
Saad B.; Zaid H.; Shanak S.; Kadan S.; Anti-Diabetes and Anti-Obesity Medicinal Plants and Phytochemicals 2017
doi: 10.1007/978-3-319-54102-0
De Sousa V.M.C.; Dos Santos E.V.; Sgarbieri V.C.; The importance of prebiotics in functional foods and clinical practice. Food Nutr Sci 2011,2(2)
George Kerry R.; Patra J.K.; Gouda S.; Park Y.; Shin H.S.; Das G.; Benefaction of probiotics for human health: A review. J Food Drug Anal 2018,26(3),927-939
doi: 10.1016/j.jfda.2018.01.002 pubmed: 29976412
Macfarlane G.T.; Macfarlane S.; Fermentation in the human large intestine: Its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol 2011,45(Suppl.),S120-S127
doi: 10.1097/MCG.0b013e31822fecfe pubmed: 21992950
Ashaolu T.J.; Ashaolu J.O.; Adeyeye S.A.O.; Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: A critical review. J Appl Microbiol 2021,130(3),677-687
doi: 10.1111/jam.14843 pubmed: 32892434
Damaskos D.; Kolios G.; Probiotics and prebiotics in inflammatory bowel disease: Microflora ‘on the scope’. Br J Clin Pharmacol 2008,65(4),453-467
doi: 10.1111/j.1365-2125.2008.03096.x pubmed: 18279467
Mohanty D.; Misra S.; Mohapatra S.; Sahu P.S.; Prebiotics and synbiotics: Recent concepts in nutrition. Food Biosci 2018,26,152-160
doi: 10.1016/j.fbio.2018.10.008
Palai S.; Derecho C.M.P.; Kesh S.S.; Egbuna C.; Onyeike P.C.; Prebiotics, probiotics, synbiotics and its importance in the management of diseases. In: Egbuna, C.; Dable Tupas, G.; Eds. Functional Foods and Nutraceuticals Springer Cham,2020,173-196
doi: 10.1007/978-3-030-42319-3_10
Marques F.Z.; Nelson E.; Chu P.Y.; Horlock D.; Fiedler A.; Ziemann M.; Tan J.K.; Kuruppu S.; Rajapakse N.W.; El-Osta A.; Mackay C.R.; Kaye D.M.; High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 2017,135(10),964-977
doi: 10.1161/CIRCULATIONAHA.116.024545 pubmed: 27927713
Patel B.; Kumar P.; Banerjee R.; Basu M.; Pal A.; Samanta M.; Das S.; Lactobacillus acidophilus attenuates Aeromonas hydrophila induced cytotoxicity in catla thymus macrophages by modulating oxidative stress and inflammation. Mol Immunol 2016,75,69-83
doi: 10.1016/j.molimm.2016.05.012 pubmed: 27262084
Guarino M.P.L.; Altomare A.; Emerenziani S.; Di Rosa C.; Ribolsi M.; Balestrieri P.; Iovino P.; Rocchi G.; Cicala M.; Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients 2020,12(4),1037
doi: 10.3390/nu12041037 pubmed: 32283802
Netto B.D.M.; Bettini S.C.; Clemente A.P.G.; Ferreira J.P.; Boritza K.; Souza, Sde.F.; Von der Heyde, M.E.; Earthman, C.P.; Dâmaso, A.R. Roux-en-Y gastric bypass decreases pro-inflammatory and thrombotic biomarkers in individuals with extreme obesity. Obes Surg 2015,25(6),1010-1018
doi: 10.1007/s11695-014-1484-7 pubmed: 25403776
Ashrafian H.; Li J.V.; Spagou K.; Harling L.; Masson P.; Darzi A.; Nicholson J.K.; Holmes E.; Athanasiou T.; Bariatric surgery modulates circulating and cardiac metabolites. J Proteome Res 2014,13(2),570-580
doi: 10.1021/pr400748f pubmed: 24279706
Wang Y.H.; Current progress of research on intestinal bacterial translocation. Microb Pathog 2021,152,104652
doi: 10.1016/j.micpath.2020.104652 pubmed: 33249165
Li J.; Lin S.; Vanhoutte P.M.; Woo C.W.; Xu A.; Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- Mice. Circulation 2016,133(24),2434-2446
doi: 10.1161/CIRCULATIONAHA.115.019645 pubmed: 27143680
Branchereau M.; Burcelin R.; Heymes C.; The gut microbiome and heart failure: A better gut for a better heart. Rev Endocr Metab Disord 2019,20(4),407-414
doi: 10.1007/s11154-019-09519-7 pubmed: 31705258
Pamer E.G.; Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 2016,352(6285),535-538
doi: 10.1126/science.aad9382
Du Y.; Li X.; Su C.; Wang L.; Jiang J.; Hong B.; The human gut microbiome - a new and exciting avenue in cardiovascular drug discovery. Expert Opin Drug Discov 2019,14(10),1037-1052
doi: 10.1080/17460441.2019.1638909 pubmed: 31315489
Wang Z.; Roberts A.B.; Buffa J.A.; Levison B.S.; Zhu W.; Org E.; Gu X.; Huang Y.; Zamanian-Daryoush M.; Culley M.K.; DiDonato A.J.; Fu X.; Hazen J.E.; Krajcik D.; DiDonato J.A.; Lusis A.J.; Hazen S.L.; Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015,163(7),1585-1595
doi: 10.1016/j.cell.2015.11.055 pubmed: 26687352
Singh V.; Yeoh B.S.; Vijay-Kumar M.; Gut microbiome as a novel cardiovascular therapeutic target. Curr Opin Pharmacol 2016,27,8-12
doi: 10.1016/j.coph.2016.01.002 pubmed: 26828626
de Groot P.F.; Frissen M.N.; de Clercq N.C.; Nieuwdorp M.; Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes 2017,8(3),253-267
doi: 10.1080/19490976.2017.1293224 pubmed: 28609252
Vrieze A.; Van Nood E.; Holleman F.; Salojärvi J.; Kootte R.S.; Bartelsman J.F.W.M.; Dallinga-Thie G.M.; Ackermans M.T.; Serlie M.J.; Oozeer R.; Derrien M.; Druesne A.; Van Hylckama Vlieg J.E.; Bloks V.W.; Groen A.K.; Heilig H.G.; Zoetendal E.G.; Stroes E.S.; de Vos W.M.; Hoekstra J.B.; Nieuwdorp M.; Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012,143(4),913-6.e7
doi: 10.1053/j.gastro.2012.06.031 pubmed: 22728514
Brown J.M.; Hazen S.L.; The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 2015,66,343-359
doi: 10.1146/annurev-med-060513-093205 pubmed: 25587655
Fan Y.; Pedersen O.; Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021,19(1),55-71
pubmed: 32887946
Currò D.; The role of gut microbiota in the modulation of drug action: A focus on some clinically significant issues. Expert Rev Clin Pharmacol 2018,11(2),171-183
doi: 10.1080/17512433.2018.1414598 pubmed: 29210311
Zhang J.; Zhang J.; Wang R.; Gut microbiota modulates drug pharmacokinetics. Drug Metab Rev 2018,50(3),357-368
doi: 10.1080/03602532.2018.1497647 pubmed: 30227749
Toghi M.; Bitarafan S.; Simvastatin therapy in multiple sclerosis patients with respect to gut microbiome-friend or foe? J Neuroimmune Pharmacol 2019,14(4),531-533
doi: 10.1007/s11481-019-09881-y pubmed: 31628587
Liu Y.; Song X.; Zhou H.; Zhou X.; Xia Y.; Dong X.; Zhong W.; Tang S.; Wang L.; Wen S.; Xiao J.; Tang L.; Gut microbiome associates with lipid-lowering effect of rosuvastatin in vivo. Front Microbiol 2018,9,530
doi: 10.3389/fmicb.2018.00530 pubmed: 29623075
Dias A.M.; Cordeiro G.; Estevinho M.M.; Veiga R.; Figueira L.; Reina-Couto M.; Magro F.; Gut bacterial microbiome composition and statin intake-A systematic review. Pharmacol Res Perspect 2020,8(3),e00601
Moludi J.; Saiedi S.; Ebrahimi B.; Alizadeh M.; Khajebishak Y.; Ghadimi S.S.; Probiotics supplementation on cardiac remodeling following myocardial infarction: A single-center double-blind clinical study. J Cardiovasc Transl Res 2021,14(2),299-307
doi: 10.1007/s12265-020-10052-1 pubmed: 32681453

Auteurs

Yogesh Garg (Y)

Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab-151001, India.

Navjot Kanwar (N)

Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab-151001, India.

Shruti Chopra (S)

Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201303, India.

Murtaza M Tambuwala (MM)

School of Pharmacy & Pharmaceutical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine- BT521SA, United Kingdom.

Hemraj Dodiya (H)

Department of Neurobiology, The University of Chicago, Chicago, Illinois-60637, USA.

Amit Bhatia (A)

Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab-151001, India.

Abhinav Kanwal (A)

Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab-151001, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH