A relationship between phages and organic carbon in wastewater treatment plant effluents.
Activated sludge
Bacteriophages
Metaviromics
Microbial ecology
Tertiary treatment
Journal
Water research X
ISSN: 2589-9147
Titre abrégé: Water Res X
Pays: England
ID NLM: 101742109
Informations de publication
Date de publication:
01 Aug 2022
01 Aug 2022
Historique:
received:
21
03
2022
revised:
27
05
2022
accepted:
15
06
2022
entrez:
28
6
2022
pubmed:
29
6
2022
medline:
29
6
2022
Statut:
epublish
Résumé
With stringent effluent requirements and the implementation of new processes for micropollutant removal, it is increasingly important for wastewater treatment plants (WWTPs) to understand the factors affecting effluent quality. Phages (viruses infecting prokaryotes) are abundant in the biological treatment processes. They can contribute to organic carbon in the treated effluent both because they are organic in nature and occur in the effluent and because they cause lysis of microorganisms. Today very little is known about the effects of phages on effluent quality. The goal of this study was, therefore, to determine the relationship between phages and organic carbon in WWTP effluents. We also examined the diversity, taxonomy, and host-association of DNA phages using metagenomics. Effluent samples were collected from four WWTPs treating municipal wastewater. Significant differences in both organic carbon and virus-like particle concentrations were observed between the plants and there was a linear relationship between the two parameters. The phage communities were diverse with many members being taxonomically unclassified. Putative hosts were dominated by bacteria known to be abundant in activated sludge systems such as
Identifiants
pubmed: 35761925
doi: 10.1016/j.wroa.2022.100146
pii: S2589-9147(22)00016-0
pmc: PMC9233278
doi:
Types de publication
Journal Article
Langues
eng
Pagination
100146Informations de copyright
© 2022 The Author(s). Published by Elsevier Ltd.
Déclaration de conflit d'intérêts
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
FEMS Microbiol Ecol. 2010 Dec;74(3):631-42
pubmed: 20883494
Methods Mol Biol. 2019;1962:1-14
pubmed: 31020551
Bioinformatics. 2020 Aug 15;36(14):4126-4129
pubmed: 32413137
Nat Biotechnol. 2021 May;39(5):578-585
pubmed: 33349699
Microb Biotechnol. 2010 Jul;3(4):467-72
pubmed: 21255344
Curr Opin Biotechnol. 2011 Jun;22(3):449-55
pubmed: 21354780
Nature. 2005 Sep 15;437(7057):356-61
pubmed: 16163346
Nature. 2015 Dec 3;528(7580):46-8
pubmed: 26632584
Water Sci Technol. 2012;66(10):2115-21
pubmed: 22949241
ISME J. 2010 Mar;4(3):327-36
pubmed: 19924159
Microb Ecol. 2007 Jan;53(1):143-52
pubmed: 17165120
Sci Total Environ. 2019 Mar 25;658:449-456
pubmed: 30579202
Nucleic Acids Res. 2021 Apr 6;49(6):3127-3138
pubmed: 33677572
ISME J. 2021 Apr;15(4):981-998
pubmed: 33199808
FEMS Microbiol Rev. 2004 May;28(2):127-81
pubmed: 15109783
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Appl Environ Microbiol. 1996 Jun;62(6):1991-7
pubmed: 16535334
Bacteriophage. 2011 Mar;1(2):86-93
pubmed: 22334864
Nat Methods. 2020 Mar;17(3):261-272
pubmed: 32015543
Nat Rev Microbiol. 2020 Jan;18(1):21-34
pubmed: 31690825
Microbiome. 2020 Sep 11;8(1):132
pubmed: 32917275
J Chem Inf Model. 2013 Mar 25;53(3):613-22
pubmed: 23384306
Genome Res. 2008 Feb;18(2):293-7
pubmed: 18077539
Bioinformatics. 2021 Jul 12;37(Suppl_1):i25-i33
pubmed: 34252923
Genome Res. 2009 Sep;19(9):1639-45
pubmed: 19541911
Environ Microbiol. 2009 Aug;11(8):1971-82
pubmed: 19508553
Nat Microbiol. 2021 Jan;6(1):3-6
pubmed: 33349678
Appl Microbiol Biotechnol. 2021 Jul;105(13):5299-5307
pubmed: 34181033
Environ Sci Technol. 2011 Sep 1;45(17):7408-15
pubmed: 21780771
Nat Microbiol. 2019 Jul;4(7):1183-1195
pubmed: 31086312
Nat Rev Microbiol. 2020 Mar;18(3):125-138
pubmed: 32015529
Biol Rev Camb Philos Soc. 2017 May;92(2):1081-1100
pubmed: 27113012
Virol J. 2012 Nov 12;9:265
pubmed: 23140220
Appl Microbiol Biotechnol. 2017 Aug;101(16):6495-6504
pubmed: 28755263
Sci Total Environ. 2019 Mar 10;655:986-1008
pubmed: 30577146
Curr Opin Microbiol. 2017 Aug;38:66-73
pubmed: 28527384
Nat Rev Microbiol. 2010 Aug;8(8):593-9
pubmed: 20601964
Water Res. 2019 Apr 1;152:264-273
pubmed: 30682570
Nat Rev Microbiol. 2014 Jul;12(7):519-28
pubmed: 24931044
Environ Sci Technol. 2009 Aug 1;43(15):5990-5
pubmed: 19731708
Nat Microbiol. 2018 Jul;3(7):754-766
pubmed: 29867096
Water Res. 2021 Jun 1;197:117079
pubmed: 33819664
BMC Bioinformatics. 2010 Mar 08;11:119
pubmed: 20211023
Bacteriophage. 2011 Jan;1(1):31-45
pubmed: 21687533
Water Res. 2009 Mar;43(4):1101-9
pubmed: 19095276
Bioinformatics. 2020 Apr 1;36(7):2251-2252
pubmed: 31742321