Juvenile-to-adult transition invariances in fishes: Perspectives on proximate and ultimate causation.
gill-oxygen limitation theory
growth models
life-history theory
size at maturity invariance
Journal
Journal of fish biology
ISSN: 1095-8649
Titre abrégé: J Fish Biol
Pays: England
ID NLM: 0214055
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
received:
15
03
2022
accepted:
24
06
2022
pubmed:
29
6
2022
medline:
21
10
2022
entrez:
28
6
2022
Statut:
ppublish
Résumé
To bridge physiological and evolutionary perspectives on size at maturity in fishes, the authors focus on the approximately invariant ratio between the estimated oxygen supply at size at maturity (Q
Substances chimiques
Oxygen
S88TT14065
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
874-884Informations de copyright
© 2022 Fisheries Society of the British Isles.
Références
Agrawal, A. A. (2020). A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology, 101, e02924.
Amarasinghe, U. S., & Pauly, D. (2021). The relationship between size at maturity and maximum size in cichlid populations corroborates the gill-oxygen limitation theory (GOLT). Asian Fisheries Science, 34, 14-22.
Atkinson, D. (1994). Temperature and organism size: A biological law for ectotherms? Advances in Ecological Research, 25, 1-58.
Baudron, A. R., Needle, C. L., Rijnsdorp, A. D., & Marshall, C. T. (2014). Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Global Change Biology, 20, 1023-1031. https://doi.org/10.1111/gcb.12514.
Beauchamp, K. C., Collins, N. C., & Henderson, B. A. (2004). Covariation of growth and maturation of lake whitefish (Coregonus clupeaformis). Journal of Great Lakes Research, 30, 451-460. https://doi.org/10.1016/S0380-1330(04)70361-5.
Bernatchez, L., & Dodson, J. J. (1985). Influence of temperature and current speed on the swimming capacity of lake whitefish (Coregonus clupeaformis) and cisco (C. artedii). Canadian Journal of Fisheries and Aquatic Sciences, 42, 1522-1529.
von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws. II). Human Biology, 10, 81-213.
Beverton, R. J. H. (1963). Maturation, growth, and mortality of clupeid and engraulid stocks in relation to fishing. Rapports et Proces-verbaux des Réunions. Conseil International pour l'Éxploration de la Mer, 154, 44-67.
Beverton, R. J. H. (1992). Patterns of reproductive strategy parameters in some marine teleost fishes. Journal of Fish Biology, 41, 137-160.
Beverton, R. J. H., & Holt, S. J. (1959). A review of the life-spans and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In G. E. W. Wolstenholm & M. O'Connor (Eds.), Ciba foundation colloquia on ageing. Vol. 5. The lifespan of animals (pp. 142-180). London: Churchill.
Budaev, S., Jørgensen, C., Mangel, M., Eliassen, S., & Giske, J. (2019). Decision-making from the animal perspective: Bridging ecology and subjective cognition. Frontiers in Ecology and Evolution, 7, 14. https://doi.org/10.3389/fevo.2019.00164.
Charnov, E. L. (1993). Life history invariants: Some explorations of symmetry in evolutionary ecology. New York: Oxford University Press.
Charnov, E. L. (2008). Fish growth: Bertalanffy k is proportional to reproductive effort. Environmental Biology of Fishes, 83, 185-187.
Charnov, E. L., Turner, T. F., & Winemiller, K. O. (2001). Reproductive constraints and the evolution of life histories with indeterminate growth. Proceedings of the National Academy of Sciences (USA), 98, 9460-9464.
Chen, Z., Bigman, J., Xian, W., Liang, C., Chu, E., & Pauly, D. (2022). The ratio of length at first maturity to maximum length in marine and freshwater fish. Journal of Fish Biology. https://doi.org/10.1111/jfb.14970.
Clarke, A., & Johnston, N. M. (1999). Scaling of metabolic rate with body mass and temperature in teleost fish. Journal of Animal Ecology, 68, 893-905.
Curran-Everett, D. (2013). Explorations in statistics: The analysis of ratios and normalized data. Advances in Physiology Education, 37, 213-219. https://doi.org/10.1152/advan.00053.2013.
Day, T., & Rowe, L. (2002). Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions. American Naturalist, 159, 338-350. https://doi.org/10.1086/338989.
Diaz Pauli, B., Kolding, J., Jeyakanth, G., & Heino, M. (2017). Effects of ambient oxygen and size-selective mortality on growth and maturation in guppies. Conservation Physiology, 5, cox010. https://doi.org/10.1093/conphys/cox010.
Djira, G., Hasler, M., Gerhard, D., Segbehoe, L., & Schaarschmidt, F. (2020). mratios: Ratios of coefficients in the general linear model. R package version 1.4.2.
Ebener, M. P., Kinnunen, R. E., Schneeberger, P. J., Mohr, L. C., Hoyle, J. A., & Peeters, P. (2008). Management of commercial fisheries of lake whitefish in the Laurentian Great Lakes of North America. In M. G. Schecter, W. W. Taylor, & N. J. Leonard (Eds.), International governance of fisheries ecosystems: Learning from the past, finding solutions for the future (Vol. 62, pp. 99-143). Bethesda, MD: American Fisheries Society Symposium.
Fera, S. A., Rennie, M. D., & Dunlop, E. S. (2015). Cross-basin analysis of long-term trends in the growth of lake whitefish in the Laurentian Great Lakes. Journal of Great Lakes Research, 41, 1138-1149.
Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17, 581-613. https://doi.org/10.1007/s11160-007-9059-5.
Fieller, E. C. (1940). The biological standardization of insulin. Supplement to the Journal of the Royal Statistical Society, 7, 1-64.
Froese, R. (2006). Cube law, condition factors and weight-length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology, 22, 241-253.
Froese, R., & Pauly, D. (Eds.). (2022). FishBase. World Wide Web electronic publication. www.fishbase.org.
Glazier, D. S. (2009). Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. Journal of Comparative Physiology B, 179, 821-828. https://doi.org/10.1007/s00360-009-0363-3.
Gobin, J., Lester, N. P., Cottrill, A., Fox, M. G., & Dunlop, E. S. (2015). Trends in growth and recruitment of Lake Huron lake whitefish during a period of ecosystem change, 1985 to 2012. Journal of Great Lakes Research, 41, 405-414.
He, J. X., Bence, J. R., Madenjian, C. P., Pothoven, S. A., Dobiesz, N. E., Fielder, D. G., … Koproski, S. R. (2015). Coupling age-structured stock assessment and fish bioenergetics models: A system of time-varying models for quantifying piscivory patterns during the rapid trophic shift in the main basin of Lake Huron. Canadian Journal of Fisheries and Aquatic Sciences, 72, 7-23. https://doi.org/10.1139/cjfas-2014-0161.
Holt, R. E., & Jørgensen, C. (2015). Climate change in fish: Effects of respiratory constraints on optimal life history and behaviour. Biology Letters, 11, 20141032. https://doi.org/10.1098/rsbl.2014.1032.
Jensen, A. L. (1997). Origin of the relation between K and Linf and synthesis of relations among life history parameters. Canadian Journal of Fisheries and Aquatic Sciences, 54, 987-989.
Jørgensen, C., Ernande, B., Fiksen, Ø., & Dieckmann, U. (2006). The logic of skipped spawning in fish. Canadian Journal of Fisheries and Aquatic Sciences, 63, 200-211.
Jørgensen, C., & Fiksen, Ø. (2006). State-dependent energy allocation in cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 63, 186-199.
Kearney, M. R. (2021). What is the status of metabolic theory one century after Pütter invented the von Bertalanffy growth curve? Biological Reviews, 96, 557-575. https://doi.org/10.1111/brv.12668.
Killen, S. S., Atkinson, D., & Glazier, S. (2010). The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecology Letters, 13, 184-193.
Koch, F., & Wieser, W. (1983). Partitioning of energy in fish: Can reduction of swimming activity compensate for the cost of production? Journal of Experimental Biology, 107, 141-146.
Kolding, J., Haug, L., & Stefansson, S. (2008). Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Canadian Journal of Fisheries and Aquatic Sciences, 65, 1413-1424. https://doi.org/10.1139/F08-059.
Kozłowski, J. (1996). Optimal allocation of resources explains interspecific life-history patterns in animals with indeterminate growth. Proceedings of the Royal Society of London B, 263, 559-566.
Kuhnlein, H. V., & Humphries, M. M. (2017). Traditional animal foods of indigenous peoples of northern North America. Montreal: Centre for Indigenous Peoples' nutrition and environment, McGill University. http://traditionalanimalfoods.org/.
Lefevre, S., McKenzie, D. J., & Nilsson, G. E. (2017). Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. Global Change Biology, 23, 3449-3459.
Lefevre, S., McKenzie, D. J., & Nilsson, G. E. (2018). In modelling effects of global warming, invalid assumptions lead to unrealistic projections. Global Change Biology, 24, 553-556.
Legendre, P. (2018). lmodel2: Model II regression. R package version 1.7-3.
Lester, N. P., Shuter, B. J., & Abrams, P. A. (2004). Interpreting the von Bertalanffy model of somatic growth in fishes: The cost of reproduction. Proceedings of the Royal Society of London B, 271, 1625-1631. https://doi.org/10.1098/rspb.2004.2778.
Madenjian, C. P., O'Connor, D. V., Pothoven, S. A., Schneeberger, P. J., Rediske, R. R., O'Keefe, J. P., … Brandt, S. B. (2006). Evaluation of a lake whitefish bioenergetics model. Transactions of the American Fisheries Society, 135, 61-75.
Madenjian, C. P., Pothoven, S. A., & Kao, Y.-C. (2013). Reevaluation of lake trout and lake whitefish bioenergetics models. Journal of Great Lakes Research, 39, 358-364.
Meyer, K. A., & Schill, D. J. (2021). The gill-oxygen limitation theory and size at maturity/maximum size relationships for salmonid populations occupying flowing waters. Journal of Fish Biology, 98, 44-49. https://doi.org/10.1111/jfb.14555.
Morbey, Y. E. (2018). Female-biased dimorphism in size and age at maturity is reduced at higher latitudes in lake whitefish Coregonus clupeaformis. Journal of Fish Biology, 93, 40-46.
Morbey, Y. E., & Mema, M. (2018). Size-selective fishing and the potential for fisheries-induced evolution in lake whitefish. Ecological Applications, 11, 1412-1424. https://doi.org/10.1111/eva.12635.
Ohlberger, J., Mehner, T., Staaks, G., & Hölker, F. (2008). Temperature-related physiological adaptations promote ecological divergence in a sympatric species pair of temperate freshwater fish, Coregonus spp. Functional Ecology, 22, 501-508. https://doi.org/10.1111/j.1365-2435.2008.01391.x.
Ohlberger, J., Mehner, T., Staaks, G., & Hölker, F. (2012). Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos, 121, 245-251. https://doi.org/10.1111/j.1600-0706.2011.19882.x.
Ohlberger, J., Staaks, G., & Hölker, F. (2007). Effects of temperature, swimming speed and body mass on standard and active metabolic rate in vendace (Coregonus albula). Journal of Comparative Physiology B, 177, 905-916. https://doi.org/10.1007/s00360-007-0189-9.
Pankhurst, N. W. (2016). Reproduction and development. In C. B. Schreck, L. Tort, A. P. Farrell, & C. J. Brauner (Eds.), Biology of stress: Fish physiology (pp. 295-331). Amsterdam, The Netherlands: Elsevier.
Parker, G. A. (1992). The evolution of sexual size dimorphism in fish. Journal of Fish Biology, 41, 1-20. https://doi.org/10.1111/j.1095-8649.1992.tb03864.x.
Pauly, D. (1978). A preliminary compilation of fish length growth parameters. Berichte des Institut für Meereskunde an der Universität Kiel, 55, 200.
Pauly, D. (1981). The relationships between gill surface area and growth performance in fish: A generalization of von Bertalanffy's theory of growth. Berichte der Deutschen Wissenchaftlichen Kommission für Meeresforschung, 28, 251-282.
Pauly, D. (1984). A mechanism for the juvenile-to-adult transition in fishes. Journal du Conseil/Conseil Permanent International pour l'Exploration de la Mer, 41, 280-284.
Pauly, D. (1998). Why squids, though not fish, may be better understood by pretending they are. South African Journal of Marine Science, 20, 47-58.
Pauly, D. (2019). Gasping fish and panting squids: Oxygen, temperature and the growth of water-breathing animals. Oldendorf/Luhe: International Ecology Institute.
Pauly, D. (2021a). The gill-oxygen limitation theory (GOLT) and its critics. Science. Advances, 7, eabc6050. https://doi.org/10.1126/sciadv.abc6050.
Pauly, D. (2021b). Why do fish reach first maturity when they do? Journal of Fish Biology. https://doi.org/10.1111/jfb.14902.
Pauly, D., & Cheung, W. W. L. (2017). Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Global Change Biology, 24, e15-e26. https://doi.org/10.1111/gcb.13831.
Pauly, D., & Cheung, W. W. L. (2018). On confusing cause and effect in the oxygen limitation of fish. Global Change Biology, 24, e743-e744. https://doi.org/10.1111/gcb.14383.
Perrin, N. (1995). About Berrigan and Charnov's life-history puzzle. Oikos, 73, 137-139.
Philippi, T., & Seger, J. (1989). Hedging one's evolutionary bets, revisited. Trends in Ecology and Evolution, 4, 41-44.
Pilling, G. M., Kirkwood, G. P., & Walker, S. G. (2002). An improved method for estimating individual growth variability in fish, and the correlation between von Bertalanffy growth parameters. Canadian Journal of Fisheries and Aquatic Sciences, 59, 424-432.
Pörtner, H. O. (2001). Climate change and temperature dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88, 137-146. https://doi.org/10.1007/s001140100216.
Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95-97. https://doi.org/10.1126/science.1135471.
Pütter, A. (1920). Studien über physiologische Ähnlichkeit. VI. Wachstumsähnlichkeiten. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 180, 293-340.
R Core Team. (2021). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Rennie, M. D., Sprules, W. G., & Johnson, T. B. (2009). Factors affecting the growth and condition of lake whitefish (Coregonus clupeaformis). Canadian Journal of Fisheries and Aquatic Sciences, 66, 2096-2018.
Rennie, M. D., & Verdon, R. (2008). Development and evaluation of condition indices for the lake whitefish. North American Journal of Fisheries Management, 28, 1270-1293.
Roff, D. A. (1984). The evolution of life history parameters in teleosts. Canadian Journal of Fisheries and Aquatic Sciences, 41, 989-1000.
Roff, D. A. (1992). The evolution of life histories: Theory and analysis. New York: Chapman & Hall.
SAS Institute Inc. (2011). Base SAS® 9.3 Procedures Guide. Cary, NC: SAS Institute, Inc.
Shelton, A. O., & Mangel, M. (2012). Estimating von Bertalanffy parameters with individual and environmental variations in growth. Journal of Biological Dynamics, 6, 3-30.
Snover, M. L., Watters, G. M., & Mangel, M. (2005). Interacting effects of behavior and oceanography on growth in salmonids with examples for coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 62, 1219-1230.
Stearns, S. C. (1992). The evolution of life histories. New York: Oxford University Press.
Thorpe, J. E. (2007). Maturation responses of salmonids to changing developmental opportunities. Marine Ecology Progress Series, 335, 285-288.
Thorpe, J. E., Mangel, M., Metcalfe, N. B., & Huntingford, F. A. (1998). Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L. Evolutionary Ecology, 12, 581-599.
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410-433.
Tinbergen, N. (2005). Facsimile of on aims and methods of ethology. Animal Biology, 55, 297-321.
van Rijn, I., Buba, Y., DeLong, J., Kiflawi, M., & Belmaker, J. (2017). Large but uneven reduction in fish size across species in relation to changing sea temperatures. Global Change Biology, 23, 3667-3674. https://doi.org/10.1111/gcb.13688.
Wang, H.-Y., & Höök, T. O. (2009). Eco-genetic model to explore fishing-induced ecological and evolutionary effects on growth and maturation schedules. Evolutionary Applications, 2, 438-455. https://doi.org/10.1111/j.1752-4571.2009.00088.x.
Waples, R. S., & Audzijonyte, A. (2016). Fishery-induced evolution provides insights into adaptive responses of marine species to climate change. Frontiers in Ecology and the Environment, 14, 217-224. https://doi.org/10.1002/fee.1264.
Warton, D. I., Wright, I. J., Falster, D. S., & Westoby, M. (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
Wright, P. J. (2007). Understanding the maturation process for field investigations of fisheries-induced evolution. Marine Ecology Progress Series, 335, 279-283.
Wu, R. S. S. (2002). Hypoxia: From molecular responses to ecosystem responses. Marine Pollution Bulletin, 45, 35-45.