Digital histological morphometry of the human pineal gland in a postmortem study, with endocrine and neurological clinical implications.
autopsy
histology
immunohistochemistry
morphometry
neuroendocrine
pineal gland
Journal
Anatomia, histologia, embryologia
ISSN: 1439-0264
Titre abrégé: Anat Histol Embryol
Pays: Germany
ID NLM: 7704218
Informations de publication
Date de publication:
Jan 2023
Jan 2023
Historique:
revised:
08
06
2022
received:
09
04
2022
accepted:
10
06
2022
pubmed:
29
6
2022
medline:
19
1
2023
entrez:
28
6
2022
Statut:
ppublish
Résumé
The pineal gland is a small-sized, photo neuroendocrine organ in the midline of the brain that synthesises and secretes melatonin and serotonin. Chords and islands of pinealocytes constitute the secretory parenchyma, while glial tissue and calcifications represent degenerative changes. This study examined human postmortem pineal glands to microscopically assess morphological changes possibly associated with clinical data, by using digital techniques. A retrospective autopsy study has been performed on 72 paediatric and adult autopsy cases. The glands have been processed for histological analysis and immunohistochemical staining with synaptophysin (SYN), neuron-specific enolase (NSE), and neurofilament (NF). Slides were digitally scanned. Morphometric data were obtained using CaseViewer and ImageJ. The comorbidities used for correlation with morphometric data were obesity, type 2 diabetes, adrenal gland adenoma, goitre, chronic pancreatitis, arterial hypertension, and mixed dementia. Thirty-three females and 39 males were included in the study. Increased secretory parenchyma was found in patients with chronic pancreatitis, arterial hypertension, and adrenal gland adenoma. Reduced activity was found in patients with type 2 diabetes, obesity, advanced pineal calcification, mixed dementia, and old age. There were no changes associated with goitre, cachexia, or Willis's polygon atherosclerosis. No significant differences between gender were found. The activity of the pineal gland can be assessed by quantitative immunohistochemistry of neuroendocrine and structural pinealocyte markers and observation of glial tissue and calcifications. There is a need for further research to evaluate the clinical impact of these morphological changes on the neuroendocrine systems, with clinical implications in endocrinology, neurology, and even psychiatry. Digital techniques offer a more exact analysis of histological data.
Substances chimiques
Melatonin
JL5DK93RCL
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12-20Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
Arunkumar, K. (2015). Age- and sex- related changes in pineal gland: A morphological and histological study. American Journal of Internal Medicine., 3, 10. https://doi.org/10.11648/j.ajim.s.2015030601.13
Barker, S. A., Borjigin, J., Lomnicka, I., & Strassman, R. (2013). LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomedical Chromatography : BMC, 27(12), 1690-1700. https://doi.org/10.1002/bmc.2981
Bayliss, C. R., Bishop, N. L., & Fowler, R. C. (1985). Pineal gland calcification and defective sense of direction. British Medical Journal (Clinical Research Ed.), 291(6511), 1758-1759. https://doi.org/10.1136/bmj.291.6511.1758
Bolat, D., Kürüm, A., & Canpolat, S. (2018). Morphology and quantification of sheep pineal glands at pre-pubertal, pubertal and post-pubertal periods. Anatomia, Histologia, Embryologia, 47(4), 338-345. https://doi.org/10.1111/ahe.12359
Bosnjak, J., Butkovic, S. S., Miskov, S., Coric, L., Jadrijevic-Tomas, A., & Mejaski-Bosnjak, V. (2018). Epilepsy in patients with pineal gland cyst. Clinical Neurology and Neurosurgery, 165, 72-75. https://doi.org/10.1016/j.clineuro.2017.12.025
Bosnjak, J., Budisić, M., Azman, D., Strineka, M., Crnjaković, M., & Demarin, V. (2009). Pineal gland cysts--an overview. Acta Clinica Croatica, 48(3), 355-358.
Erlich, S. S., & Apuzzo, M. L. (1985). The pineal gland: Anatomy, physiology, and clinical significance. Journal of Neurosurgery, 63(3), 321-341. https://doi.org/10.3171/jns.1985.63.3.0321
Fedchenko, N., & Reifenrath, J. (2014). Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagnostic Pathology, 9, 221. https://doi.org/10.1186/s13000-014-0221-9
Gheban, B. A., Rosca, I. A., & Crisan, M. (2019). The morphological and functional characteristics of the pineal gland. Medicine and pharmacy reports, 92(3), 226-234. https://doi.org/10.15386/mpr-1235
Gheban, B. A., Colosi, H. A., Gheban-Rosca, I. A., Pop, B., Domșa, A. T., Georgiu, C., Gheban, D., Crișan, D., & Crișan, M. (2021). Age-related changes of the pineal gland in humans: A digital Anatomo-histological morphometric study on autopsy cases with comparison to predigital-era studies. Medicina (Kaunas, Lithuania), 57(4), 383. https://doi.org/10.3390/medicina57040383
Golan, J., Torres, K., Staśkiewicz, G. J., Opielak, G., & Maciejewski, R. (2002). Morphometric parameters of the human pineal gland in relation to age, body weight and height. Folia Morphologica, 61(2), 111-113.
Gomez Esteban, M. B., Munoz, M. I., Carbajo, S., Carvajal, J. C., Alvarez-Morujo, A. J., & Barragan, L. M. (2008). Pineal gliosis and gland ageing. The possible role of the glia in the transfer of melatonin from pinealocytes to the blood and cerebrospinal fluid. European Journal of Anatomy, 12, 97-114.
Grosshans, M., Vollmert, C., Vollstaedt-Klein, S., Nolte, I., Schwarz, E., Wagner, X., Leweke, M., Mutschler, J., Kiefer, F., & Bumb, J. M. (2016). The association of pineal gland volume and body mass in obese and normal weight individuals: A pilot study. Psychiatria Danubina, 28(3), 220-224.
Gurcan, M. N., Boucheron, L. E., Can, A., Madabhushi, A., Rajpoot, N. M., & Yener, B. (2009). Histopathological image analysis: A review. IEEE Reviews in Biomedical Engineering, 2, 147-171. https://doi.org/10.1109/RBME.2009.2034865
Han, Q., Li, Y., Wang, J., & Zhao, X. (2018). Sex difference in the morphology of pineal gland in adults based on brain magnetic resonance imaging. The Journal of Craniofacial Surgery, 29(5), e509-e513. https://doi.org/10.1097/SCS.0000000000004558
Hasegawa, A., Ohtsubo, K., & Mori, W. (1987). Pineal gland in old age; quantitative and qualitative morphological study of 168 human autopsy cases. Brain Research, 409(2), 343-349. https://doi.org/10.1016/0006-8993(87)90720-7
Hasegawa, A., & Mori, W. (1980). Morphometry of the human pineal gland: Relationship to the adrenal cortex. Acta Pathologica Japonica, 30(3), 407-410. https://doi.org/10.1111/j.1440-1827.1980.tb01335.x
Kahilogullari, G., Ugur, H. C., Comert, A., Brohi, R. A., Ozgural, O., Ozdemir, M., & Karahan, S. T. (2013). Arterial vascularization of the pineal gland. Child's Nervous System : ChNS : Official Journal of the International Society for Pediatric Neurosurgery, 29(10), 1835-1841. https://doi.org/10.1007/s00381-012-2018-z
Koshy, Shajan & Vettivel, S.K. (2001). Varying appearance of calcification in human pineal gland: A light microscopic study. Journal of the Anatomical Society of India. 50. 17-18. Available from: papers3://publication/uuid/82501519-B706-493F-A8E6-5F116E93A7BB
Kurtulus Dereli, A., Demırci, G. N., Dodurga, Y., Özbal, S., Cankurt, U., Boz, B., Adiguzel, E., & Acar, K. (2018). Evaluation of human pineal gland acetylserotonin O-methyltransferase immunoreactivity in suicide: A preliminary study. Medicine, Science, and the Law, 58(4), 233-238. https://doi.org/10.1177/0025802418797178
Kuwano, R., Iwanaga, T., Nakajima, T., Masuda, T., & Takahashi, Y. (1983). Immunocytochemical demonstration of hydroxyindole O-methyltransferase (HIOMT), neuron-specific enolase (NSE) and S-100 protein in the bovine pineal gland. Brain Research, 274(1), 171-175. https://doi.org/10.1016/0006-8993(83)90535-8
de Lima, L. M., dos Reis, L. C., & de Lima, M. A. (2001). Influence of the pineal gland on the physiology, morphometry and morphology of pancreatic islets in rats. Brazilian Journal of Biology = Revista Brasleira de Biologia, 61(2), 333-340. https://doi.org/10.1590/s0034-71082001000200018
López-Muñoz, F., Molina, J. D., Rubio, G., & Alamo, C. (2011). An historical view of the pineal gland and mental disorders. Journal of Clinical Neuroscience : Official Journal of The Neurosurgical Society of Australasia, 18(8), 1028-1037. https://doi.org/10.1016/j.jocn.2010.11.037
Macchi, M. M., & Bruce, J. N. (2004). Human pineal physiology and functional significance of melatonin. Frontiers in Neuroendocrinology, 25(3-4), 177-195. https://doi.org/10.1016/j.yfrne.2004.08.001
Matsuoka, T., Imai, A., Fujimoto, H., Kato, Y., Shibata, K., Nakamura, K., Yokota, H., Yamada, K., & Narumoto, J. (2018). Reduced pineal volume in Alzheimer disease: A retrospective cross-sectional MR imaging study. Radiology, 286(1), 239-248. https://doi.org/10.1148/radiol.2017170188
Mittal, V. A., Karlsgodt, K., Zinberg, J., Cannon, T. D., & Bearden, C. E. (2010). Identification and treatment of a pineal region tumor in an adolescent with prodromal psychotic symptoms. The American Journal of Psychiatry, 167(9), 1033-1037. https://doi.org/10.1176/appi.ajp.2010.09071043
Mrvelj, A., & Womble, M. D. (2020). Fluoride-free diet stimulates pineal growth in aged male rats. Biological Trace Element Research, 197(1), 175-183. https://doi.org/10.1007/s12011-019-01964-4
Nölte, I., Lütkhoff, A. T., Stuck, B. A., Lemmer, B., Schredl, M., Findeisen, P., & Groden, C. (2009). Pineal volume and circadian melatonin profile in healthy volunteers: An interdisciplinary approach. Journal of Magnetic Resonance Imaging : JMRI, 30(3), 499-505. https://doi.org/10.1002/jmri.21872
Ostrin, L. A. (2019). Ocular and systemic melatonin and the influence of light exposure. Clinical & Experimental Optometry, 102(2), 99-108. https://doi.org/10.1111/cxo.12824
Patel, S., Rahmani, B., Gandhi, J., Seyam, O., Joshi, G., Reid, I., Smith, N. L., Waltzer, W. C., & Khan, S. A. (2020). Revisiting the pineal gland: A review of calcification, masses, precocious puberty, and melatonin functions. The International Journal of Neuroscience, 130(5), 464-475. https://doi.org/10.1080/00207454.2019.1692838
Peres, M. F., Valença, M. M., Amaral, F. G., & Cipolla-Neto, J. (2019). Current understanding of pineal gland structure and function in headache. Cephalalgia : An International Journal of Headache, 39(13), 1700-1709. https://doi.org/10.1177/0333102419868187
Peschke, E., Bähr, I., & Mühlbauer, E. (2013). Melatonin and pancreatic islets: Interrelationships between melatonin, insulin and glucagon. International Journal of Molecular Sciences, 14(4), 6981-7015. https://doi.org/10.3390/ijms14046981
Ramji, S., Touska, P., Rich, P., & MacKinnon, A. D. (2017). Normal neuroanatomical variants that may be misinterpreted as disease entities. Clinical Radiology, 72(10), 810-825. https://doi.org/10.1016/j.crad.2017.06.118
Redecker, P., Grube, D., & Jahn, R. (1990). Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). Anatomy and Embryology, 181(5), 433-440. https://doi.org/10.1007/BF02433790
Sandyk, R., & Kay, S. R. (1991). The relationship of pineal calcification and melatonin secretion to the pathophysiology of tardive dyskinesia and Tourette's syndrome. The International Journal of Neuroscience, 58(3-4), 215-247. https://doi.org/10.3109/00207459108985437
Sharma, S., Singh, H., Ahmad, N., Mishra, P., & Tiwari, A. (2015). The role of melatonin in diabetes: Therapeutic implications. Archives of endocrinology and metabolism, 59(5), 391-399. https://doi.org/10.1590/2359-3997000000098
Song, J., Whitcomb, D. J., & Kim, B. C. (2017). Correction to: The role of melatonin in the onset and progression of type 3 diabetes. Molecular Brain, 10(1), 59. https://doi.org/10.1186/s13041-017-0333-8
Sparks, D. L. (1998). Anatomy of a new paired tract of the pineal gland in humans. Neuroscience Letters, 248(3), 179-182. https://doi.org/10.1016/s0304-3940(98)00365-6
Stehle, J. H., Saade, A., Rawashdeh, O., Ackermann, K., Jilg, A., Sebestény, T., & Maronde, E. (2011). A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. Journal of Pineal Research, 51(1), 17-43. https://doi.org/10.1111/j.1600-079X.2011.00856.x
Szebeni, A., & Beleznay, E. (1992). New simple method for thyroid volume determination by ultrasonography. Journal of Clinical Ultrasound : JCU, 20(5), 329-337. https://doi.org/10.1002/jcu.1870200505
Taraszewska, A., Matyja, E., Koszewski, W., Zaczyński, A., Bardadin, K., & Czernicki, Z. (2008). Asymptomatic and symptomatic glial cysts of the pineal gland. Folia Neuropathologica, 46(3), 186-195.
Tan, D. X., Xu, B., Zhou, X., & Reiter, R. J. (2018). Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules (Basel, Switzerland), 23(2), 301. https://doi.org/10.3390/molecules23020301
Tapp, E. (1979). The histology and pathology of the human pineal gland. Progress in Brain Research, 52, 481-500. https://doi.org/10.1016/S0079-6123(08)62955-6
Whitehead, M. T., Oh, C., Raju, A., & Choudhri, A. F. (2015). Physiologic pineal region, choroid plexus, and dural calcifications in the first decade of life. AJNR. American Journal of Neuroradiology, 36(3), 575-580. https://doi.org/10.3174/ajnr.A4153
Zang, X., Nilaver, G., Stein, B. M., Fetell, M. R., & Duffy, P. E. (1985). Immunocytochemistry of pineal astrocytes: Species differences and functional implications. Journal of Neuropathology and Experimental Neurology, 44(5), 486-495. https://doi.org/10.1097/00005072-198509000-00004