A Versatile Chemoenzymatic Nanoreactor that Mimics NAD(P)H Oxidase for the In Situ Regeneration of Cofactors.
Cascade Reactions
Chemoenzymatic Materials
Heterogeneous Biocatalysis
Nicotinamide Cofactor Regeneration
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
26 09 2022
26 09 2022
Historique:
received:
11
05
2022
pubmed:
29
6
2022
medline:
23
9
2022
entrez:
28
6
2022
Statut:
ppublish
Résumé
Herein, we report a multifunctional chemoenzymatic nanoreactor (NanoNOx) for the glucose-controlled regeneration of natural and artificial nicotinamide cofactors. NanoNOx are built of glucose oxidase-polymer hybrids that assemble in the presence of an organometallic catalyst: hemin. The design of the hybrid is optimized to increase the effectiveness and the directional channeling at low substrate concentration. Importantly, NanoNOx can be reutilized without affecting the catalytic properties, can show high stability in the presence of organic solvents, and can effectively oxidize assorted natural and artificial enzyme cofactors. Finally, the hybrid was successfully coupled with NADH-dependent dehydrogenases in one-pot reactions, using a strategy based on the sequential injection of a fuel, namely, glucose. Hence, this study describes the first example of a hybrid chemoenzymatic nanomaterial able to efficiently mimic NOx enzymes in cooperative one-pot cascade reactions.
Identifiants
pubmed: 35762738
doi: 10.1002/anie.202206926
pmc: PMC9796410
doi:
Substances chimiques
Coenzymes
0
Polymers
0
Solvents
0
NAD
0U46U6E8UK
Niacinamide
25X51I8RD4
Hemin
743LRP9S7N
Oxidoreductases
EC 1.-
Glucose Oxidase
EC 1.1.3.4
NADPH Oxidases
EC 1.6.3.-
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202206926Informations de copyright
© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Références
Angew Chem Int Ed Engl. 2011 Mar 1;50(10):2397-400
pubmed: 21351363
Nanoscale. 2020 Oct 1;12(37):19284-19292
pubmed: 32935692
Chembiochem. 2019 Oct 15;20(20):2593-2596
pubmed: 30883002
Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6819-6824
pubmed: 29633483
Small. 2020 Apr;16(15):e1902751
pubmed: 31468669
Mikrochim Acta. 2021 Apr 8;188(5):160
pubmed: 33834299
ACS Appl Mater Interfaces. 2019 Aug 14;11(32):29158-29166
pubmed: 31313570
J Biol Chem. 1997 Feb 28;272(9):5469-76
pubmed: 9038149
Biochemistry. 1996 Feb 20;35(7):2380-7
pubmed: 8652580
Bioprocess Biosyst Eng. 2016 Apr;39(4):603-11
pubmed: 26801669
ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10942-10951
pubmed: 33646753
Angew Chem Int Ed Engl. 2021 Jan 4;60(1):88-119
pubmed: 32558088
Nanoscale. 2020 Dec 8;12(46):23578-23585
pubmed: 33225340
ChemSusChem. 2021 Apr 9;14(7):1687-1691
pubmed: 33559949
ACS Appl Mater Interfaces. 2015 Aug 5;7(30):16694-705
pubmed: 26173996
J Inorg Biochem. 2013 Dec;129:162-71
pubmed: 23916118
Angew Chem Int Ed Engl. 2022 Sep 26;61(39):e202206926
pubmed: 35762738
Front Microbiol. 2015 Sep 16;6:957
pubmed: 26441891
ACS Sustain Chem Eng. 2017;5(9):8199-8204
pubmed: 33133786
J Am Chem Soc. 2014 Dec 10;136(49):16966-9
pubmed: 25423359
Comput Struct Biotechnol J. 2014 Feb 26;9:e201402005
pubmed: 24757503
Small. 2022 Mar;18(11):e2104420
pubmed: 35037383
Angew Chem Int Ed Engl. 2011 Dec 2;50(49):11710-4
pubmed: 22229160
Org Lett. 2013 Jan 4;15(1):180-3
pubmed: 23256747