Linear interactions between intraocular, intracranial pressure, and retinal vascular pulse amplitude in the fourier domain.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2022
2022
Historique:
received:
29
06
2021
accepted:
13
06
2022
entrez:
28
6
2022
pubmed:
29
6
2022
medline:
1
7
2022
Statut:
epublish
Résumé
To compare the retinal vascular pulsatile characteristics in subjects with normal (ICPn) and high (ICPh) intracranial pressure and quantify the interactions between intraocular pressure, intracranial pressure, and retinal vascular pulse amplitude in the Fourier domain. Twenty-one subjects were examined using modified photoplethysmography with simultaneous ophthalmodynamometry. A harmonic regression model was fitted to each pixel in the time-series, and used to quantify the retinal vascular pulse wave parameters including the harmonic regression wave amplitude (HRWa). The pulse wave attenuation was measured under different ranges of induced intraocular pressure (IOPi), as a function of distance along the vessel (VDist). Intracranial pressure (ICP) was measured using lumbar puncture. A linear mixed-effects model was used to estimate the correlations between the Yeo-Johnson transformed harmonic regression wave amplitude (HRWa-YJt) with the predictors (IOPi, VDist and ICP). A comparison of the model coefficients was done by calculating the weighted Beta (βx) coefficients. The median HRWa in the ICPn group was higher in the retinal veins (4.563, interquartile range (IQR) = 3.656) compared to the retinal arteries (3.475, IQR = 2.458), p<0.0001. In contrast, the ICPh group demonstrated a reduction in the median venous HRWa (3.655, IQR = 3.223) and an elevation in the median arterial HRWa (3.616, IQR = 2.715), p<0.0001. Interactions of the pulsation amplitude with ICP showed a significant disordinal interaction and the loss of a main effect of the Fourier sine coefficient (bn1) in the ICPh group, suggesting that this coefficient reflects the retinal vascular response to ICP wave. The linear mixed-effects model (LME) showed the decay in the venous (HRWa-YJt) was almost twice that in the retinal arteries (-0.067±0.002 compared to -0.028±0.0021 respectively, p<0.00001). The overall interaction models had a total explanatory power of (conditional R2) 38.7%, and 42% of which the fixed effects explained 8.8%, and 5.8% of the variance (marginal R2) for the venous and arterial models respectively. A comparison of the damping effect of VDist and ICP showed that ICP had less influence on pulse decay than distance in the retinal arteries (βICP = -0.21, se = ±0.017 compared to [Formula: see text], se = ±0.019), whereas the mean value was equal for the retinal veins (venous [Formula: see text], se = ±0.015, βICP = -0.42, se = ±0.019). The retinal vascular pulsation characteristics in the ICPh group showed high retinal arterial and low venous pulsation amplitudes. Interactions between retinal vascular pulsation amplitude and ICP suggest that the Fourier sine coefficient bn1 reflects the retinal vascular response to the ICP wave. Although a matrix of regression lines showed high linear characteristics, the low model explanatory power precludes its use as a predictor of ICP. These results may guide future predictive modelling in non-invasive estimation of ICP using modified photoplethysmography.
Identifiants
pubmed: 35763528
doi: 10.1371/journal.pone.0270557
pii: PONE-D-21-21075
pmc: PMC9239478
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0270557Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Ophthalmology. 1993 Jul;100(7):987-97
pubmed: 8321541
Aust N Z J Ophthalmol. 1996 Aug;24(3):233-8
pubmed: 8913125
PLoS One. 2015 Feb 02;10(2):e0116475
pubmed: 25643350
Circ Res. 1966 Oct;19(4):834-50
pubmed: 5917852
Sci Rep. 2020 Aug 3;10(1):13062
pubmed: 32747697
Br J Ophthalmol. 1971 Oct;55(10):649-63
pubmed: 5124843
Ophthalmologica. 1963;146:137-42
pubmed: 14061447
Am J Ophthalmol. 1969 Jun;67(6):954-6
pubmed: 5785858
Microvasc Res. 1998 Nov;56(3):154-65
pubmed: 9828153
Ophthalmologica. 1997;211(2):115-8
pubmed: 9097320
J Clin Neurosci. 2020 Feb;72:292-297
pubmed: 31540860
Surg Neurol Int. 2017 Apr 05;8:51
pubmed: 28480113
Ophthalmologica. 2012;228(4):214-21
pubmed: 23006897
Childs Nerv Syst. 2016 Apr;32(4):599-607
pubmed: 26767844
Ophthalmology. 2010 Feb;117(2):259-66
pubmed: 19969367
Arch Ophthalmol. 2004 Oct;122(10):1477-81
pubmed: 15477459
Circ Res. 1968 Oct;23(4):539-51
pubmed: 5677945
Stat Methods Med Res. 2018 May;27(5):1575-1584
pubmed: 27587593
Eur J Ophthalmol. 2016 Jan-Feb;26(1):36-43
pubmed: 26165327
Nat Rev Neurol. 2013 Jan;9(1):44-53
pubmed: 23165340
Physiol Meas. 2018 Jan 31;39(1):014004
pubmed: 29176040
Fluids Barriers CNS. 2020 Jun 23;17(1):40
pubmed: 32576216
J Ophthalmol. 2014;2014:937360
pubmed: 24876948
Acta Neurol Scand. 2002 Jun;105(6):431-40
pubmed: 12027831
Psychol Methods. 2012 Dec;17(4):615-22
pubmed: 22984788
J Neuroophthalmol. 2020 Jun;40(2):174-177
pubmed: 31464805
Invest Ophthalmol Vis Sci. 2008 Dec;49(12):5412-8
pubmed: 18719086
Doc Ophthalmol. 1977 Sep 30;44(1):215-7
pubmed: 923414
Graefes Arch Clin Exp Ophthalmol. 2002 Jun;240(6):475-80
pubmed: 12107515
J Neurol Neurosurg Psychiatry. 2004 Jun;75(6):813-21
pubmed: 15145991
Int Ophthalmol Clin. 2014 Winter;54(1):1-11
pubmed: 24296367
J Ophthalmol. 2020 Jun 9;2020:3107472
pubmed: 33101730
Indian J Ophthalmol. 2010 May-Jun;58(3):189-94
pubmed: 20413919
Curr Eye Res. 2021 Apr;46(4):524-531
pubmed: 32806985
J Appl Stat. 2019 Jun 15;47(13-15):2312-2327
pubmed: 35707424
Physiol Meas. 2017 Jul 24;38(8):R143-R182
pubmed: 28489610
Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):5025-5031
pubmed: 30326071
Opt Lett. 2021 Sep 15;46(18):4450-4453
pubmed: 34525019
Acta Ophthalmol. 2010 Nov;88(7):717-22
pubmed: 19681764
Opt Lett. 2015 Oct 15;40(20):4771-4
pubmed: 26469616
Psychon Bull Rev. 2016 Feb;23(1):163-71
pubmed: 26022837
Graefes Arch Clin Exp Ophthalmol. 2010 Mar;248(3):401-7
pubmed: 20107829
PLoS One. 2020 May 7;15(5):e0232523
pubmed: 32379837
Shanghai Arch Psychiatry. 2014 Apr;26(2):105-9
pubmed: 25092958
Trans Am Ophthalmol Soc. 2015;113:T6
pubmed: 26622070
SAGE Open Med Case Rep. 2021 Oct 26;9:2050313X211054633
pubmed: 34721875
No To Shinkei. 1983 Dec;35(12):1223-7
pubmed: 6671074
Ophthalmology. 2004 Aug;111(8):1489-94
pubmed: 15288976
Acta Ophthalmol. 2012 Sep;90(6):552-8
pubmed: 20560890
Neurocrit Care. 2011 Dec;15(3):599-608
pubmed: 21519957
Circ Res. 1970 Dec;27(6):1069-80
pubmed: 5494860
Physiol Meas. 2007 Mar;28(3):R1-39
pubmed: 17322588
J Neurol Neurosurg Psychiatry. 2003 Jan;74(1):7-9
pubmed: 12486256
Front Cell Neurosci. 2016 Feb 04;10:20
pubmed: 26869887
Front Physiol. 2017 Jul 28;8:553
pubmed: 28804464
Invest Ophthalmol Vis Sci. 2011 Jul 23;52(8):5457-64
pubmed: 21467181
Curr Eye Res. 2012 Nov;37(11):1019-24
pubmed: 22730930
PLoS One. 2012;7(12):e52664
pubmed: 23300737
Acta Ophthalmol Scand. 2004 Apr;82(2):239
pubmed: 15043551
IEEE Trans Biomed Eng. 1969 Oct;16(4):284-95
pubmed: 5354907
J Cardiovasc Pharmacol Ther. 2001 Jan;6(1):5-21
pubmed: 11452332
Invest Ophthalmol Vis Sci. 2015 May;56(5):3292-303
pubmed: 26024112
Arch Neurol. 1978 Jan;35(1):37-40
pubmed: 619871
Med Bull (Ann Arbor). 1950 Oct;16(10):305-8
pubmed: 14782335
Strabismus. 2001 Mar;9(1):13-6
pubmed: 11262696
Microvasc Res. 1997 May;53(3):211-21
pubmed: 9211399
J Ultrastruct Res. 1963 Aug;39:10-28
pubmed: 14065353
Arch Ophthalmol. 1973 Jan;89(1):52-8
pubmed: 4630889
Prog Retin Eye Res. 2015 May;46:67-83
pubmed: 25619727
Prog Retin Eye Res. 2016 Nov;55:82-107
pubmed: 27417037
Neurocrit Care. 2004;1(2):183-94
pubmed: 16174913