The contribution of object identity and configuration to scene representation in convolutional neural networks.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2022
2022
Historique:
received:
19
01
2022
accepted:
14
06
2022
entrez:
28
6
2022
pubmed:
29
6
2022
medline:
1
7
2022
Statut:
epublish
Résumé
Scene perception involves extracting the identities of the objects comprising a scene in conjunction with their configuration (the spatial layout of the objects in the scene). How object identity and configuration information is weighted during scene processing and how this weighting evolves over the course of scene processing however, is not fully understood. Recent developments in convolutional neural networks (CNNs) have demonstrated their aptitude at scene processing tasks and identified correlations between processing in CNNs and in the human brain. Here we examined four CNN architectures (Alexnet, Resnet18, Resnet50, Densenet161) and their sensitivity to changes in object and configuration information over the course of scene processing. Despite differences among the four CNN architectures, across all CNNs, we observed a common pattern in the CNN's response to object identity and configuration changes. Each CNN demonstrated greater sensitivity to configuration changes in early stages of processing and stronger sensitivity to object identity changes in later stages. This pattern persists regardless of the spatial structure present in the image background, the accuracy of the CNN in classifying the scene, and even the task used to train the CNN. Importantly, CNNs' sensitivity to a configuration change is not the same as their sensitivity to any type of position change, such as that induced by a uniform translation of the objects without a configuration change. These results provide one of the first documentations of how object identity and configuration information are weighted in CNNs during scene processing.
Identifiants
pubmed: 35763531
doi: 10.1371/journal.pone.0270667
pii: PONE-D-22-01832
pmc: PMC9239439
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0270667Subventions
Organisme : NEI NIH HHS
ID : R01 EY030854
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Neuron. 2020 Nov 11;108(3):413-423
pubmed: 32918861
Brain. 2000 Sep;123 ( Pt 9):1903-12
pubmed: 10960054
J Cogn Neurosci. 2000 Nov;12(6):1013-23
pubmed: 11177421
J Neurosci. 2011 Jan 26;31(4):1333-40
pubmed: 21273418
Nature. 1998 Apr 9;392(6676):598-601
pubmed: 9560155
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1153-1158
pubmed: 28096381
Nat Neurosci. 2016 Apr;19(4):613-22
pubmed: 26900926
Nat Commun. 2021 Apr 6;12(1):2065
pubmed: 33824315
Cereb Cortex. 2013 Apr;23(4):947-57
pubmed: 22473894
Sci Rep. 2016 Jun 10;6:27755
pubmed: 27282108
Nat Commun. 2018 Dec 4;9(1):5159
pubmed: 30514836
J Neurosci. 2021 May 12;41(19):4234-4252
pubmed: 33789916
Neuroimage. 2018 Oct 15;180(Pt A):101-109
pubmed: 28793238
Elife. 2018 Mar 07;7:
pubmed: 29513219
J Cogn Neurosci. 2021 Sep 1;33(10):2032-2043
pubmed: 32897121
Neuroimage. 2019 Aug 15;197:368-382
pubmed: 31054350
PLoS One. 2021 Jun 30;16(6):e0253442
pubmed: 34191815
Annu Rev Vis Sci. 2019 Sep 15;5:373-397
pubmed: 31226012
PLoS Comput Biol. 2014 Nov 06;10(11):e1003915
pubmed: 25375136
J Neurosci. 2009 Aug 26;29(34):10573-81
pubmed: 19710310
Neuroimage. 2009 Oct 1;47(4):1747-56
pubmed: 19398014
PLoS Comput Biol. 2018 Apr 23;14(4):e1006111
pubmed: 29684011
Neuron. 1998 Jul;21(1):191-202
pubmed: 9697863
Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9
pubmed: 7667258
Trends Cogn Sci. 2022 Feb;26(2):117-127
pubmed: 34857468
IEEE Trans Pattern Anal Mach Intell. 2018 Jun;40(6):1452-1464
pubmed: 28692961
Annu Rev Vis Sci. 2019 Sep 15;5:399-426
pubmed: 31394043
J Neurosci. 2000 May 1;20(9):3310-8
pubmed: 10777794