Population structure and inbreeding in wild house mice (Mus musculus) at different geographic scales.
Journal
Heredity
ISSN: 1365-2540
Titre abrégé: Heredity (Edinb)
Pays: England
ID NLM: 0373007
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
21
02
2022
accepted:
10
06
2022
revised:
09
06
2022
pubmed:
29
6
2022
medline:
30
8
2022
entrez:
28
6
2022
Statut:
ppublish
Résumé
House mice (Mus musculus) have spread globally as a result of their commensal relationship with humans. In the form of laboratory strains, both inbred and outbred, they are also among the most widely used model organisms in biomedical research. Although the general outlines of house mouse dispersal and population structure are well known, details have been obscured by either limited sample size or small numbers of markers. Here we examine ancestry, population structure, and inbreeding using SNP microarray genotypes in a cohort of 814 wild mice spanning five continents and all major subspecies of Mus, with a focus on M. m. domesticus. We find that the major axis of genetic variation in M. m. domesticus is a south-to-north gradient within Europe and the Mediterranean. The dominant ancestry component in North America, Australia, New Zealand, and various small offshore islands are of northern European origin. Next we show that inbreeding is surprisingly pervasive and highly variable, even between nearby populations. By inspecting the length distribution of homozygous segments in individual genomes, we find that inbreeding in commensal populations is mostly due to consanguinity. Our results offer new insight into the natural history of an important model organism for medicine and evolutionary biology.
Identifiants
pubmed: 35764696
doi: 10.1038/s41437-022-00551-z
pii: 10.1038/s41437-022-00551-z
pmc: PMC9411160
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
183-194Informations de copyright
© 2022. The Author(s), under exclusive licence to The Genetics Society.
Références
Nat Commun. 2021 Sep 14;12(1):5425
pubmed: 34521843
Mamm Genome. 2013 Feb;24(1-2):1-20
pubmed: 23223940
Mol Ecol. 2013 Oct;22(20):5205-20
pubmed: 23998800
PLoS One. 2011;6(12):e28622
pubmed: 22174847
Am Zool. 1970 Feb;10(1):53-66
pubmed: 5437297
Elife. 2015 Apr 15;4:
pubmed: 25875302
Chromosoma. 2014 Dec;123(6):529-44
pubmed: 25053180
Bioessays. 2013 Sep;35(9):780-6
pubmed: 23836388
Nature. 2011 Sep 14;477(7364):289-94
pubmed: 21921910
Proc Natl Acad Sci U S A. 1977 Jun;74(6):2523-5
pubmed: 267945
Mol Ecol. 2008 Dec;17(24):5349-63
pubmed: 19121002
Proc Biol Sci. 2011 Apr 7;278(1708):1034-43
pubmed: 20880891
Genetics. 2014 May;197(1):91-106
pubmed: 24578350
Heredity (Edinb). 2007 Oct;99(4):432-42
pubmed: 17611494
Genetics. 2011 Sep;189(1):237-49
pubmed: 21705750
Chromosoma. 1976 Nov 29;58(4):341-53
pubmed: 1001158
Am J Hum Genet. 2015 Sep 3;97(3):404-18
pubmed: 26299365
Proc Biol Sci. 2009 Jan 22;276(1655):209-17
pubmed: 18826937
BMC Evol Biol. 2010 Oct 26;10:325
pubmed: 20977744
Trends Genet. 2003 Jan;19(1):24-31
pubmed: 12493245
Curr Biol. 2007 Dec 4;17(23):2061-6
pubmed: 17997307
Nat Genet. 2011 May 29;43(7):648-55
pubmed: 21623374
Bioinformatics. 2017 Jan 1;33(1):142-144
pubmed: 27634946
Biochem Genet. 1984 Apr;22(3-4):275-303
pubmed: 6375655
Nature. 2001 Dec 6;414(6864):631-4
pubmed: 11740558
Theor Popul Biol. 1995 Oct;48(2):172-97
pubmed: 7482370
Q Rev Biol. 1979 Sep;54(3):265-99
pubmed: 390600
Am J Hum Genet. 2008 Sep;83(3):359-72
pubmed: 18760389
Nat Genet. 2011 Mar;43(3):269-76
pubmed: 21317889
Genetics. 2007 Dec;177(4):2277-91
pubmed: 18073432
Bioinformatics. 2016 Jun 1;32(11):1749-51
pubmed: 26826718
Mol Biol Evol. 1988 Jan;5(1):63-78
pubmed: 2833677
BMC Evol Biol. 2015 Feb 25;15:26
pubmed: 25888407
Nat Commun. 2018 Aug 14;9(1):3258
pubmed: 30108219
Genome Res. 2015 Aug;25(8):1114-24
pubmed: 26149421
Mol Ecol. 2009 Nov;18(21):4477-94
pubmed: 19754514
Genome. 1998 Feb;41(1):104-10
pubmed: 9549063
Heredity (Edinb). 2002 Aug;89(2):154-8
pubmed: 12136419
BMC Biol. 2010 Oct 26;8:131
pubmed: 20977781
Nature. 2000 Jan 13;403(6766):158
pubmed: 10646592
Nat Genet. 2007 Sep;39(9):1100-7
pubmed: 17660819
BMC Evol Biol. 2020 Sep 15;20(1):120
pubmed: 32933487
Curr Top Microbiol Immunol. 1986;127:86-94
pubmed: 3731858
Elife. 2016 Feb 02;5:e09977
pubmed: 26836309
Sci Data. 2016 Sep 13;3:160075
pubmed: 27622383
Nat Rev Genet. 2018 Apr;19(4):220-234
pubmed: 29335644
Genetics. 2015 Sep;201(1):213-28
pubmed: 26199233
PLoS Genet. 2012;8(11):e1002967
pubmed: 23166502
Mol Ecol. 2017 Jan;26(2):457-470
pubmed: 27864900
R Soc Open Sci. 2018 Jan 24;5(1):170879
pubmed: 29410804
Am J Hum Genet. 1999 Dec;65(6):1493-500
pubmed: 10577902
J Mammal. 1967 Feb;48(1):88-99
pubmed: 6045185
Mol Biol Evol. 2016 Jun;33(6):1381-95
pubmed: 26882987
PLoS Genet. 2018 Sep 24;14(9):e1007672
pubmed: 30248095
Folia Biol (Praha). 1994;40(6):483-96
pubmed: 7589706
G3 (Bethesda). 2015 Dec 18;6(2):263-79
pubmed: 26684931
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4099-4104
pubmed: 28348225
Trends Genet. 2013 May;29(5):298-308
pubmed: 23290437
J Exp Med. 1976 Nov 2;144(5):1324-35
pubmed: 1032893
Mol Biol Evol. 2006 Apr;23(4):790-7
pubmed: 16421176
PLoS One. 2010 Nov 15;5(11):e13996
pubmed: 21085596
Sci Rep. 2020 May 19;10(1):8276
pubmed: 32427845
Genome Res. 2009 Sep;19(9):1655-64
pubmed: 19648217
PLoS Genet. 2007 Aug;3(8):e144
pubmed: 17722986
Genetics. 1998 Oct;150(2):835-61
pubmed: 9755213
J Hered. 2017 Jan;108(1):25-35
pubmed: 27729448
Nat Methods. 2009 Sep;6(9):663-6
pubmed: 19668205
PLoS Genet. 2013;9(12):e1003995
pubmed: 24339797
Bioinformatics. 2004 Jan 22;20(2):289-90
pubmed: 14734327
Heredity (Edinb). 2013 Nov;111(5):375-90
pubmed: 23820581
Proc Biol Sci. 2009 Jan 22;276(1655):201-7
pubmed: 18826939