Mobility and crop uptake of Zn in a legacy sludge-enriched agricultural soil amended with biochar or compost: insights from a pot and recirculating column leaching test.
Biochar
Compost
Metal leaching
Pore water
Zinc
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
24
03
2022
accepted:
26
06
2022
pubmed:
29
6
2022
medline:
11
11
2022
entrez:
28
6
2022
Statut:
ppublish
Résumé
The application of organic amendments to contaminated soils is a remediation method to regulate metal(loid) leaching to waters and uptake to crops. Here, wood-derived biochar and/or green waste compost was amended to a Zn-rich agricultural soil (~ 450 mg kg
Identifiants
pubmed: 35764732
doi: 10.1007/s11356-022-21744-3
pii: 10.1007/s11356-022-21744-3
doi:
Substances chimiques
Soil
0
biochar
0
Sewage
0
Charcoal
16291-96-6
Soil Pollutants
0
Zinc
J41CSQ7QDS
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
83545-83553Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Alloway BJ, Jackson AP (1991) The behaviour of heavy metals in sewage sludge-amended soils. Sci Total Environ 100 Spec No:151–176. https://doi.org/10.1016/0048-9697(91)90377-q
Antoniadis V, Alloway BJ (2002) The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ Pollut 117:515–521. https://doi.org/10.1016/s0269-7491(01)00172-5
doi: 10.1016/s0269-7491(01)00172-5
Ashworth DJ, Alloway BJ (2004) Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ Pollut 127:137–144. https://doi.org/10.1016/s0269-7491(03)00237-9
doi: 10.1016/s0269-7491(03)00237-9
Baxter M, Brereton N (2015) Total diet study of metals and other elements in food. report prepared for the UK Food Standards Agency (FS102081). The Food and Environment Research Agency, York, UK
Beesley L, Dickinson N (2011) Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol Biochem 43:188–196. https://doi.org/10.1016/j.soilbio.2010.09.035
doi: 10.1016/j.soilbio.2010.09.035
Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480. https://doi.org/10.1016/j.envpol.2010.10.016
doi: 10.1016/j.envpol.2010.10.016
Beesley L, Moreno-Jimenez E, Fellet G, et al (2015) Biochar and heavy metals. In: Biochar for environmental management, 2nd Edition. Routledge, pp 563–594
Beesley L, Moreno-Jiménez E, Gomez-Eyles JL et al (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023
doi: 10.1016/j.envpol.2011.07.023
Bhatt R, Hossain A, Sharma P (2020) Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: a review. Open Agriculture 5:176–187. https://doi.org/10.1515/opag-2020-0018
doi: 10.1515/opag-2020-0018
Bhogal A, Nicholson FA, Chambers BJ, Shepherd MA (2003) Effects of past sewage sludge additions on heavy metal availability in light textured soils: implications for crop yields and metal uptakes. Environ Pollut 121:413–423. https://doi.org/10.1016/s0269-7491(02)00230-0
doi: 10.1016/s0269-7491(02)00230-0
Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58. https://doi.org/10.1016/j.gfs.2017.01.009
doi: 10.1016/j.gfs.2017.01.009
Burachevskaya M, Mandzhieva S, Bauer T, et al (2021) The effect of granular activated carbon and biochar on the availability of Cu and Zn to Hordeum sativum Distichum in contaminated soil. Plants 10. https://doi.org/10.3390/plants10050841
Cabot C, Martos S, Llugany M et al (2019) A role for zinc in plant defense against pathogens and herbivores. Front Plant Sci 10:1171. https://doi.org/10.3389/fpls.2019.01171
doi: 10.3389/fpls.2019.01171
Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90:543–556. https://doi.org/10.1007/BF00282668
doi: 10.1007/BF00282668
Fangueiro D, Kidd PS, Alvarenga P, et al (2018) Chapter 10 - Strategies for soil protection and remediation. In: Duarte AC, Cachada A, Rocha-Santos T (eds) Soil pollution. Academic Press, 251–281
Farooq M, Ullah A, Usman M, Siddique KHM (2020) Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. Chemosphere 260:127652. https://doi.org/10.1016/j.chemosphere.2020.127652
doi: 10.1016/j.chemosphere.2020.127652
Gibbs PA, Chambers BJ, Chaudri AM et al (2006) Initial results from a long-term, multi-site field study of the effects on soil fertility and microbial activity of sludge cakes containing heavy metals. Soil Use Manage 22:11–21. https://doi.org/10.1111/j.1475-2743.2006.00003.x
doi: 10.1111/j.1475-2743.2006.00003.x
Karami N, Clemente R, Moreno-Jiménez E et al (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48. https://doi.org/10.1016/j.jhazmat.2011.04.025
doi: 10.1016/j.jhazmat.2011.04.025
Mitchell K, Mendoza-González CV, Ramos-Gómez MS et al (2020) The effect of low-temperature biochar and its non-pyrolyzed composted biosolids source on the geochemical fractionation of Pb and Cd in calcareous river sediments. Environ Earth Sci 79:1–8. https://doi.org/10.1007/s12665-020-08908-5
doi: 10.1007/s12665-020-08908-5
Moreno-Jiménez E, Beesley L, Lepp NW et al (2011) Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk. Environ Pollut 159:3078–3085. https://doi.org/10.1016/j.envpol.2011.04.004
doi: 10.1016/j.envpol.2011.04.004
Mossa A-W, Young SD, Crout NMJ (2020) Zinc uptake and phyto-toxicity: comparing intensity- and capacity-based drivers. Sci Total Environ 699:134314. https://doi.org/10.1016/j.scitotenv.2019.134314
doi: 10.1016/j.scitotenv.2019.134314
Murtaza G, Javed W, Hussain A et al (2017) Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes. Int J Phytoremediation 19:199–206. https://doi.org/10.1080/15226514.2016.1207605
doi: 10.1080/15226514.2016.1207605
Namgay T, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L). Soil Res 48:638. https://doi.org/10.1071/sr10049
doi: 10.1071/sr10049
Palmgren MG, Clemens S, Williams LE et al (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473. https://doi.org/10.1016/j.tplants.2008.06.005
doi: 10.1016/j.tplants.2008.06.005
Puga AP, Abreu CA, Melo LCA et al (2015) Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ Sci Pollut Res 22:17606–17614. https://doi.org/10.1007/s11356-015-4977-6
doi: 10.1007/s11356-015-4977-6
Rauret G, López-Sánchez JF, Sahuquillo A et al (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61. https://doi.org/10.1039/a807854h
doi: 10.1039/a807854h
Rink L, Gabriel P (2000) Zinc and the immune system. Proc Nutr Soc 59:541–552. https://doi.org/10.1017/s0029665100000781
doi: 10.1017/s0029665100000781
Smolders E, Mertens J (2013) Cadmium. In: Alloway BJ (ed) Heavy metals in soils: trace netals and metalloids in soils and their bioavailability. Springer, Netherlands, Dordrecht, pp 283–311
doi: 10.1007/978-94-007-4470-7_10
Suman D (1991) Regulation of ocean dumping by the European economic community. Ecol Law Q 18:559–618
Trakal L, Raya-Moreno I, Mitchell K, Beesley L (2017) Stabilization of metal(loid)s in two contaminated agricultural soils: comparing biochar to its non-pyrolysed source material. Chemosphere 181:150–159. https://doi.org/10.1016/j.chemosphere.2017.04.064
doi: 10.1016/j.chemosphere.2017.04.064
Trakal L, Vítková M, Hudcová B, et al (2019) Chapter 7 - Biochar and its composites for metal(loid) removal from aqueous solutions. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from biomass and waste. Elsevier, pp 113–141
Van Hien N, Valsami-Jones E, Vinh NC et al (2020) Effectiveness of different biochar in aqueous zinc removal: correlation with physicochemical characteristics. Bioresource Technology Reports 11:100466. https://doi.org/10.1016/j.biteb.2020.100466
doi: 10.1016/j.biteb.2020.100466
Wang JJ, Harrell DL (2005) Effect of ammonium, potassium, and sodium cations and phosphate, nitrate, and chloride anions on zinc sorption and lability in selected acid and calcareous soils. Soil Sci Soc Am J 69:1036–1046. https://doi.org/10.2136/sssaj2004.0148
doi: 10.2136/sssaj2004.0148
Zhang J, Yang N, Geng Y et al (2019) Effects of the combined pollution of cadmium, lead and zinc on the phytoextraction efficiency of ryegrass ( Lolium perenne L.). RSC Adv 9:20603–20611. https://doi.org/10.1039/C9RA01986C
doi: 10.1039/C9RA01986C
Zhao F-J, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380. https://doi.org/10.1016/j.pbi.2009.04.005
doi: 10.1016/j.pbi.2009.04.005