Biodegradable and Inherently Fluorescent pH-Responsive Nanoparticles for Cancer Drug Delivery.
fluorescent
nanoparticles
pH-sensitive
theranostic
thermoresponsive
Journal
Pharmaceutical research
ISSN: 1573-904X
Titre abrégé: Pharm Res
Pays: United States
ID NLM: 8406521
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
30
03
2022
accepted:
13
06
2022
pubmed:
29
6
2022
medline:
8
11
2022
entrez:
28
6
2022
Statut:
ppublish
Résumé
The development of two novel pH-only and pH- and thermo-responsive theranostic nanoparticle (NP) formulations to deliver an anticancer drug and track the accumulation and therapeutic efficacy of the formulations through inherent fluorescence. A pH-responsive formulation was synthesized from biodegradable photoluminescent polymer (BPLP) and sodium bicarbonate (SBC) via an emulsion technique, while a thermoresponsive BPLP copolymer (TFP) and SBC were used to synthesize a dual-stimuli responsive formulation via free radical co-polymerization. Cisplatin was employed as a model drug and encapsulated during synthesis. Size, surface charge, morphology, pH-dependent fluorescence, lower critical solution temperature (LCST; TFP NPs only), cytocompatibility and in vitro uptake, drug release kinetics and anticancer efficacy were assessed. While all BPLP-SBC and TFP-SBC combinations produced spherical nanoparticles of a size between 200-300 nm, optimal polymer-SBC ratios were selected for further study. Of these, the optimal BPLP-SBC formulation was found to be cytocompatible against primary Type-1 alveolar epithelial cells (AT1) up to 100 μg/mL, and demonstrated sustained drug release over 14 days, dose-dependent uptake, and marked pH-dependent A549 cancer cell killing (72 vs. 24% cell viability, at pH 7.4 vs. 6.0). The optimal TFP-SBC formulation showed excellent cytocompatibility against AT1 cells up to 500 μg/mL, sustained release characteristics, dose-dependent uptake, pH-dependent (78% at pH 7.4 vs. 64% at pH 6.0 at 37°C) and marked temperature-dependent A549 cancer cell killing (64% at 37°C vs. 37% viability at pH 6.0, 41°C). In all, both formulations hold promise as inherently fluorescent, stimuli-responsive theranostic platforms for passively targeted anti-cancer therapy.
Identifiants
pubmed: 35764754
doi: 10.1007/s11095-022-03317-8
pii: 10.1007/s11095-022-03317-8
pmc: PMC9633373
mid: NIHMS1827010
doi:
Substances chimiques
Antineoplastic Agents
0
Polymers
0
Drug Carriers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2729-2743Subventions
Organisme : NIAAA NIH HHS
ID : R21 AA029750
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR072731
Pays : United States
Organisme : NIAMS NIH HHS
ID : 1R01AR072731-01
Pays : United States
Organisme : NIAAA NIH HHS
ID : R21AA029750-01
Pays : United States
Organisme : CPRIT
ID : RP210206
Organisme : Rhode Island Foundation
ID : #20174376
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Mol Pharm. 2008 Jul-Aug;5(4):505-15
pubmed: 18672949
Biomaterials. 2012 Mar;33(8):2508-20
pubmed: 22197569
Biomaterials. 2013 Jan;34(1):1-10
pubmed: 23044041
Mater Sci Eng C Mater Biol Appl. 2021 Jun;125:112100
pubmed: 33965110
Int J Pharm. 2014 May 15;466(1-2):1-7
pubmed: 24607216
Asian Pac J Cancer Prev. 2008 Jan-Mar;9(1):1-6
pubmed: 18439063
Chem Biol Interact. 2014 Sep 5;220:102-15
pubmed: 24992398
J Control Release. 2011 Feb 28;150(1):56-62
pubmed: 21070826
Int J Pharm. 2012 May 10;427(2):435-42
pubmed: 22342467
Free Radic Biol Med. 2006 Jun 1;40(11):1914-28
pubmed: 16716893
Front Cell Dev Biol. 2019 Jan 29;7:4
pubmed: 30761299
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10086-91
pubmed: 19506254
Mol Cancer. 2003 Jan 03;2:1
pubmed: 12537587
Biointerphases. 2013 Dec;8(1):19
pubmed: 24706136
PLoS One. 2019 May 31;14(5):e0217640
pubmed: 31150477
Pharm Res. 2006 Aug;23(8):1835-41
pubmed: 16858650
Commun Biol. 2020 Mar 3;3(1):95
pubmed: 32127636
Front Bioeng Biotechnol. 2019 Nov 22;7:353
pubmed: 31824940
Cancer Res. 2013 Apr 15;73(8):2412-7
pubmed: 23423979
Drug Deliv. 2008 May;15(4):235-43
pubmed: 18446569
J Biomater Sci Polym Ed. 2004;15(5):585-94
pubmed: 15264660
Front Physiol. 2013 Dec 05;4:354
pubmed: 24367336
Curr Treat Options Oncol. 2007 Feb;8(1):38-46
pubmed: 17634834
Respirology. 2006 Jan;11 Suppl:S12-5
pubmed: 16423262
Sci Rep. 2017 Oct 16;7(1):13249
pubmed: 29038584
Adv Healthc Mater. 2012 Jul;1(4):450-6
pubmed: 23061030
Molecules. 2012 May 10;17(5):5564-91
pubmed: 22576228
J Biosci Bioeng. 2005 Jul;100(1):1-11
pubmed: 16233845
Acta Biomater. 2017 Mar 1;50:361-369
pubmed: 28069502
Nanotheranostics. 2020 Jan 1;4(1):1-13
pubmed: 31911890
Nano Rev. 2010;1:
pubmed: 22110864
Small. 2017 Mar;13(10):
pubmed: 28026115
JAMA. 2021 May 11;325(18):1829-1830
pubmed: 33787821
Theranostics. 2013;3(3):152-66
pubmed: 23471164
Biomed Environ Sci. 2015 May;28(5):341-51
pubmed: 26055561
Cancer. 1974 Jul;34(1):122-9
pubmed: 4599460
Biopolymers. 2007;88(3):325-39
pubmed: 17167795
Artif Cells Nanomed Biotechnol. 2018 Aug;46(5):949-958
pubmed: 28687054
Front Oncol. 2022 Mar 22;12:855019
pubmed: 35392227
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Biomaterials. 2018 Jul;170:70-81
pubmed: 29653288
J Pharm Sci. 2011 Feb;100(2):655-66
pubmed: 20799367