Correlation of systemic metabolic inflammation with knee osteoarthritis.
Arthritis
Cytokines
DEL-1
Inflammation
Metabolic syndrome
Journal
Hormones (Athens, Greece)
ISSN: 2520-8721
Titre abrégé: Hormones (Athens)
Pays: Switzerland
ID NLM: 101142469
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
09
11
2021
accepted:
14
06
2022
pubmed:
29
6
2022
medline:
14
9
2022
entrez:
28
6
2022
Statut:
ppublish
Résumé
The aim of this study was to analyze local and systematic inflammatory status in knee osteoarthritis (KOA), focusing on intra-articular and remote adipose tissue depots, and to explore its potential association with metabolic syndrome (MetS). Patients (n = 27) with end-stage KOA were enrolled in the study and samples from infrapatellar fat pad (IFP), synovium, subcutaneous adipose tissue (SAT), synovial fluid (SF), and serum were collected. In homogenates from the tissues, mRNA expression of developmental endothelial locus-1 (DEL-1) was determined. Interleukin 6 (IL-6) and interleukin 8 (IL-8) were measured in tissues and SF and serum samples by enzyme-linked immunosorbent assay. Fifteen patients fulfilled MetS criteria (w-MetS group) and 12 did not (non-MetS). In the entire population, IL-6 levels were significantly higher in IFP compared to synovium (median (interquartile range), 26.05 (26.16) vs. 15.75 (14.8) pg/mg of total protein, p = 0.043), but not to SAT (17.89 (17.9) pg/mg); IL-8 levels were significantly higher in IFP (17.3 (19.3) pg/mg) and SAT (24.2 (26) pg/mg) when compared to synovium (8.45 (6.17) pg/mg) (p = 0.029 and < 0.001, respectively). Significantly higher IL-6 concentrations in SF were detected in w-MetS patients compared to non-MetS (194.8 (299) vs. 64.1 (86.9) pg/ml, p = 0.027). Finally, DEL-1 mRNA expression was higher in IFP compared to synovium (eightfold, p = 0.019). Our findings support the critical role of IFP in knee joint homeostasis and progression of KOA. Furthermore, in KOA patients w-MetS, SAT is thought to play an important role in intra-knee inflammation via secretion of soluble inflammatory mediators, such as IL-6.
Identifiants
pubmed: 35764781
doi: 10.1007/s42000-022-00381-y
pii: 10.1007/s42000-022-00381-y
doi:
Substances chimiques
Interleukin-6
0
Interleukin-8
0
RNA, Messenger
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
457-466Informations de copyright
© 2022. The Author(s), under exclusive licence to Hellenic Endocrine Society.
Références
Belluzzi E, El Hadi H, Granzotto M et al (2017) Systemic and local adipose tissue in knee osteoarthritis: obesity and fat pad in knee osteoarthritis. J Cell Physiol 232:1971–1978. https://doi.org/10.1002/jcp.25716
doi: 10.1002/jcp.25716
pubmed: 27925193
Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707. https://doi.org/10.1002/art.34453
doi: 10.1002/art.34453
pubmed: 22392533
pmcid: 3366018
Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6:625–635. https://doi.org/10.1038/nrrheum.2010.159
doi: 10.1038/nrrheum.2010.159
pubmed: 20924410
Klein-Wieringa IR, Kloppenburg M, Bastiaansen-Jenniskens YM et al (2011) The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype. Ann Rheum Dis 70:851–857. https://doi.org/10.1136/ard.2010.140046
doi: 10.1136/ard.2010.140046
pubmed: 21242232
Distel E, Cadoudal T, Durant S et al (2009) The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis Rheum 60:3374–3377. https://doi.org/10.1002/art.24881
doi: 10.1002/art.24881
pubmed: 19877065
Sokolove J, Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5:77–94. https://doi.org/10.1177/1759720X12467868
doi: 10.1177/1759720X12467868
pubmed: 23641259
pmcid: 3638313
Alberti KG, Eckel RH, Grundy SM et al (2010) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Forceon Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World HeartFederation; International Atherosclerosis Society; and International Association for the Study of Obesity. Obes metabol 7:63–65. https://doi.org/10.14341/2071-8713-5281
doi: 10.14341/2071-8713-5281
Courties A, Berenbaum F, Sellam J (2019) The phenotypic approach to osteoarthritis: a look at metabolic syndrome-associated osteoarthritis. Joint Bone Spine 86:725–730. https://doi.org/10.1016/j.jbspin.2018.12.005
doi: 10.1016/j.jbspin.2018.12.005
pubmed: 30584921
Livshits G, Zhai G, Hart DJ et al (2009) Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford study. Arthritis Rheum 60:2037–2045. https://doi.org/10.1002/art.24598
doi: 10.1002/art.24598
pubmed: 19565477
pmcid: 2841820
Rai MF, Sandell L (2011) Inflammatory mediators: tracing links between obesity and osteoarthritis. Crit Rev Eukar Gene Expr 21:131–142. https://doi.org/10.1615/CritRevEukarGeneExpr.v21.i2.30
doi: 10.1615/CritRevEukarGeneExpr.v21.i2.30
Chow YY, Chin K-Y (2020) The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm 2020:1–19. https://doi.org/10.1155/2020/8293921
doi: 10.1155/2020/8293921
Urban H, Little CB (2018) The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology (United Kingdom) 57:iv10–iv21. https://doi.org/10.1093/rheumatology/kex399
doi: 10.1093/rheumatology/kex399
Kaneko S, Satoh T, Chiba J et al (2000) Interleukin–6 and interleukin–8 levels in serum and synovial fluid of patients with osteoarthritis. Cytokines Cell Mol Ther 6:71–79. https://doi.org/10.1080/13684730050515796
doi: 10.1080/13684730050515796
pubmed: 11108572
Hidai C, Zupancic T, Penta K et al (1998) Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor. Genes Dev 12:21–33. https://doi.org/10.1101/gad.12.1.21
doi: 10.1101/gad.12.1.21
pubmed: 9420328
pmcid: 529342
Pfister BE, Aydelotte MB, Burkhart W et al (2001) Del1: a new protein in the superficial layer of articular cartilage. Biochem Biophys Res Commun 286:268–273. https://doi.org/10.1006/bbrc.2001.5377
doi: 10.1006/bbrc.2001.5377
pubmed: 11500032
Eskan MA, Jotwani R, Abe T et al (2012) The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol 13:465–473. https://doi.org/10.1038/ni.2260
doi: 10.1038/ni.2260
pubmed: 22447028
pmcid: 3330141
Choi EY, Lim J-H, Neuwirth A et al (2015) Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol Psychiatry 20:880–888. https://doi.org/10.1038/mp.2014.146
doi: 10.1038/mp.2014.146
pubmed: 25385367
Yan S, Chen L, Zhao Q et al (2018) Developmental endothelial locus-1 (Del-1) antagonizes Interleukin-17-mediated allergic asthma. Immunol Cell Biol 96:526–535. https://doi.org/10.1111/imcb.12023
doi: 10.1111/imcb.12023
pubmed: 29437247
Kourtzelis I, Li X, Mitroulis I et al (2019) DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol 20:40–49. https://doi.org/10.1038/s41590-018-0249-1
doi: 10.1038/s41590-018-0249-1
pubmed: 30455459
Hajishengallis G, Chavakis T (2019) DEL-1-regulated immune plasticity and inflammatory disorders. Trends Mol Med 25:444–459. https://doi.org/10.1016/j.molmed.2019.02.010
doi: 10.1016/j.molmed.2019.02.010
pubmed: 30885428
pmcid: 6488420
Wang Z, Tran MC, Bhatia NJ et al (2016) Del1 Knockout Mice Developed More Severe Osteoarthritis Associated with Increased Susceptibility of Chondrocytes to Apoptosis. PLoS ONE 11:e0160684. https://doi.org/10.1371/journal.pone.0160684
doi: 10.1371/journal.pone.0160684
pubmed: 27505251
pmcid: 4978450
Wang Z, Boyko T, Tran MC et al (2018) DEL1 protects against chondrocyte apoptosis through integrin binding. J Surg Res 231:1–9. https://doi.org/10.1016/j.jss.2018.04.066
doi: 10.1016/j.jss.2018.04.066
pubmed: 30278915
Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502. https://doi.org/10.1136/ard.16.4.494
doi: 10.1136/ard.16.4.494
pubmed: 13498604
pmcid: 1006995
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
doi: 10.1006/abio.1976.9999
pubmed: 942051
Doxaki C, Kampranis SC, Eliopoulos AG et al (2015) Coordinated regulation of miR-155 and miR-146a genes during induction of endotoxin tolerance in macrophages. J Immunol 195:5750–5761. https://doi.org/10.4049/jimmunol.1500615
doi: 10.4049/jimmunol.1500615
pubmed: 26538391
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73
doi: 10.1038/nprot.2008.73
pubmed: 18546601
Eymard F, Pigenet A, Citadelle D et al (2017) Knee and hip intra-Articular adipose tissues (IAATs) compared with autologous subcutaneous adipose tissue: a specific phenotype for a central player in osteoarthritis. Ann Rheum Dis 76:1142–1148. https://doi.org/10.1136/annrheumdis-2016-210478
doi: 10.1136/annrheumdis-2016-210478
pubmed: 28298375
Bastiaansen-Jenniskens YM, Clockaerts S, Feijt C et al (2012) Infrapatellar fat pad of patients with end-stage osteoarthritis inhibits catabolic mediators in cartilage. Ann Rheum Dis 71:288–294. https://doi.org/10.1136/ard.2011.153858
doi: 10.1136/ard.2011.153858
pubmed: 21998115