Experimental and simulation study on aluminium alloy piston based on thermal barrier coating.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 Jun 2022
Historique:
received: 13 11 2021
accepted: 16 06 2022
entrez: 29 6 2022
pubmed: 30 6 2022
medline: 30 6 2022
Statut: epublish

Résumé

Thermal barrier coatings (TBCs) have low thermal conductivity, effectively reducing the temperature of the metal matrix and improving thermal performance, knock resistance, and combustion performance of the piston. In this study, an off-road high-pressure common-rail diesel engine was chosen as the research object. Combined with the test results of the piston temperature field under the rated power and maximum torque conditions, a finite element simulation model of the thermal barrier coating piston was established. This model enabled the distribution characteristics and variation laws of the temperature field, stress, and deformation of the thermal barrier coating on the piston matrix to be analysed. The results show that the maximum temperature of the TBC piston is 12.2% and 13.73% lower than that of the aluminium alloy piston under the rated power and maximum torque conditions, respectively. The thermal stresses of the TBC piston at the top of the cavity were 25.9% and 26.8% lower than those of the aluminium piston, while the thermo-mechanical coupling stress of the TBC piston was slightly higher than that of the aluminium piston-1.2 MPa and 3.7 MPa in the bottom of the combustion chamber with geometric mutation, respectively. The radial thermal deformation of the TBC piston was 0.067 mm and 0.073 mm lower than that of the aluminium piston, with the radial thermo-mechanical coupling deformation also decreasing by 0.069 mm and 0.075 mm, respectively. The radial thermal deformation of the piston in the direction parallel to the pinhole axis was greater than that in the direction perpendicular to the pinhole axis; the difference in the magnitude of the change results in uneven thermal deformation of the piston.

Identifiants

pubmed: 35768492
doi: 10.1038/s41598-022-15031-x
pii: 10.1038/s41598-022-15031-x
pmc: PMC9243105
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10991

Informations de copyright

© 2022. The Author(s).

Références

Cai, J., Lu, R. S. & Qin, Y. Experimental investigation of unsteady thermal load in the cylinder head of diesel engine. Trans. SCICE 5(1), 66–75. https://doi.org/10.16236/j.cnki.nrjxb.1987.01.007 (1987).
doi: 10.16236/j.cnki.nrjxb.1987.01.007
Wang, H. A review of thermal current load analysis for in-ternal combustion engine parts. Internal Combust. Engine 000(6), 4–5, 9. https://doi.org/10.3969/j.issn.1000-6494.2005.06.002 (2005).
Zhou, B. L. Internal Combustion Engine 291–292 (China Machine Press, 2011).
Deng, X. W., Lei, J. L., Wen, J., Wen, Z. G. & Shen, L. Z. Influences of piston structural parameters on heat transfer and temperature field of diesel engine piston. Trans. Chin. Soc. Agric. Eng. 33(10), 102–108. https://doi.org/10.11975/j.issn.1002-6819.2017.10.013 (2017).
doi: 10.11975/j.issn.1002-6819.2017.10.013
Zhang, X. P., Chen, X. G. & Zhang, H. S. Research progress of ceramic materials for thermal barrier coatings. J. Synth. Cryst. 46(7), 1906–1928. https://doi.org/10.16553/j.cnki.issn1000-985x.2016.07.033 (2016).
doi: 10.16553/j.cnki.issn1000-985x.2016.07.033
Mao, W. G., Zhou, Y. C., Yang, L. & Yu, X. H. Modeling of residual stresses variation with thermal cycling in thermal barrier coatings. Mech. Mater. 38(12), 1118–1127. https://doi.org/10.1016/j.mechmat.2006.01.002 (2006).
doi: 10.1016/j.mechmat.2006.01.002
Xu, G.J., Li, M.D., Zhao, Y., Chen, Q.Z. & Li, X.Z. Thermo-mechanical analysis of piston thermal stress and fatigue life for diesel engine. Chin. Internal Combust. Engine Eng. 38(2), 96–100,106. https://doi.org/10.13949/j.cnki.nrjgc.2017.02.017 (2017).
Lei, J. L., Wang, D. F., Xin, Q. F. & Wen, J. Transient heat load variation of piston top surface under steady and transition conditions. Trans. Chin. Soc. Agric. Eng. 34(21), 65–73. https://doi.org/10.11975/j.issn.1002-6819.2018.21.008 (2018).
doi: 10.11975/j.issn.1002-6819.2018.21.008
Baldissera, P. & Delprete, C. Finite Element Thermo-Structural Methodology for Investigating Diesel Engine Pistons with Thermal Barrier Coating. SAE Int. J. Engines 12(1), 69–78. https://doi.org/10.2307/26745565 (2019).
doi: 10.2307/26745565
Morel, T., Fort, E. F. & Blumberg, P. N. Effect of insulation strategy and design parameters on diesel engine heat rejection and performance. SAE Trans. 94, 753–767. https://doi.org/10.2307/44721605 (1985).
doi: 10.2307/44721605
Morel, T., Keribar, R., Blumberg, P. N. & Fort, E. F. Examination of key issues in low heat rejection engine. SAE Trans. 95, 398–414. https://doi.org/10.2307/44722637 (1986).
doi: 10.2307/44722637
Taymaz, I. The effect of thermal barrier coatings on diesel engine performance. Surf. Coat. Technol. 201(9–11), 5249–5252. https://doi.org/10.1016/j.surfcoat.2006.07.123 (2007).
doi: 10.1016/j.surfcoat.2006.07.123
Kosaka, H. et al. Concept of “temperature swing heat insulation” in combustion chamber walls, and appropriate thermo-physical properties for heat insulation coat. SAE Int. J. Engines 6(1), 142–149. https://doi.org/10.4271/2013-01-0274 (2013).
doi: 10.4271/2013-01-0274
Kawaguchi, A. et al. Thermo-swing wall insulation technology; A novel heat loss reduction approach on engine combustion chamber. SAE Tech. Pap. https://doi.org/10.4271/2016-01-2333 (2016).
doi: 10.4271/2016-01-2333
Kosaka, H. et al. Reduction of heat loss and improvement of thermal efficiency by application of “temperature swing” insulation to direct-injection diesel engines. SAE Int. J. Engines 9(3), 1449–1459. https://doi.org/10.4271/2016-01-0661 (2016).
doi: 10.4271/2016-01-0661
Kogo, T. et al. High efficiency diesel engine with low heat loss combustion concept—Toyota's inline 4-cylinder 2.8-liter ESTEC 1GD-FTV engine. SAE Tech. Pap. https://doi.org/10.4271/2016-01-0658 (2016).
Ciniviz, M., Hasimoglu, C., Şahin, F. & Salman, M. S. Impact of thermal barrier coating application on the performance and emissions of a turbocharged diesel engine. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 222(12), 2447–2455. https://doi.org/10.1243/09544070JAUTO851 (2008).
doi: 10.1243/09544070JAUTO851
Cerit, M., Ayhan, V., Parlak, A. & Yasar, H. Thermal analysis of a partially ceramic coated piston: Effect on cold start HC emission in a spark ignition engine. Appl. Therm. Eng. 31(2–3), 336–341. https://doi.org/10.1016/j.applthermaleng.2010.09.015 (2011).
doi: 10.1016/j.applthermaleng.2010.09.015
Durat, M., Kapsiz, M., Nart, E. & Parlak, A. The effects of coating materials in spark ignition engine design. Mater. Des. 36, 540–545. https://doi.org/10.1016/j.matdes.2011.11.053 (2012).
doi: 10.1016/j.matdes.2011.11.053
Reddy, G. V., Krupakaran, R. L., Tarigonda, H. & Rasu, N. G. Energy balance and emission analysis on diesel engine using different thermal barrier coated pistons. Mater. Today Proc. 43(4), 646–654. https://doi.org/10.1016/j.matpr.2020.12.424 (2021).
doi: 10.1016/j.matpr.2020.12.424
Serrano, J. R., Arnau, F. J., Martin, J. & Lombard, B. Analysis of engine walls thermal insulation: performance and emissions. SAE Tech. Pap. https://doi.org/10.4271/2015-01-1660 (2015).
doi: 10.4271/2015-01-1660
Uchida, N. & Osada, H. A new piston insulation concept for heavy-duty diesel engines to reduce heat loss from the wall. SAE Int. J. Engines 10(5), 2565–2574. https://doi.org/10.4271/2017-24-0161 (2017).
doi: 10.4271/2017-24-0161
Andruskiewicz, P., Najt, P., Durrett, R. & Payri, R. Assessing the capability of con-ventional in-cylinder insulation materials in achieving temperature swing engine performance benefits. Int. J. Engine Res. 19(6), 599–612. https://doi.org/10.1177/1468087417729254 (2018).
doi: 10.1177/1468087417729254
Broatch, A., Olmeda, P., Margot, X. & Gomez-Soriano, J. Numerical simulations for evaluating the impact of advanced insulation coatings on H
doi: 10.1016/j.applthermaleng.2018.11.106
Caputo, S. et al. Numerical and experimental investigation of a piston thermal barrier coating for an automotive diesel engine application. Appl. Therm. Eng. 162, 114233. https://doi.org/10.1016/j.applthermaleng.2019.114233 (2019).
doi: 10.1016/j.applthermaleng.2019.114233
Chen, X., Tao, Z. Y., Wang, A. H. & Zhu, B. D. Ceramic coating remelted with laser on the piston top of internal combustion engines and its heat insulating effect. Huazhong Univ. Sci. Tech 20(5), 125–128. https://doi.org/10.13245/j.hust.1992.05.022 (1992).
doi: 10.13245/j.hust.1992.05.022
Szymczyk, W. Numerical simulation of composite surface coating as a functionally graded material-ScienceDirect. Mater. Sci. Eng. A 412(1), 61–65. https://doi.org/10.1016/j.msea.2005.08.014 (2005).
doi: 10.1016/j.msea.2005.08.014
Buyukkaya, E. & Cerit, M. Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method. Surf. Coat. Technol. 202(2), 398–402. https://doi.org/10.1016/j.surfcoat.2007.06.006 (2007).
doi: 10.1016/j.surfcoat.2007.06.006
Hejwowski, T. Comparative study of thermal barrier coatings for internal combustion engine. Vacuum 85(5), 610–616. https://doi.org/10.1016/j.vacuum.2010.08.020 (2010).
doi: 10.1016/j.vacuum.2010.08.020
Feng, Y. J., Du, S. S., Cheng, J. G. & Hu, X. G. FEM simulation and thermal analysis of functional gradient materials as thermal barrier coating of piston top. Trans. Chin. Soc. Agric. Mach. 39(11), 30–34 (2008).

Auteurs

Yang Liu (Y)

Yunnan Key Laboratory of Internal Combustion Engines, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
Yunnan Key Laboratory of Plateau Emission of Internal Combustion Engines, Kunming Yunnei Power Co., Ltd, Kunming, 650200, People's Republic of China.

Jilin Lei (J)

Yunnan Key Laboratory of Internal Combustion Engines, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China. leijilin@kmust.edu.cn.
Yunnan Key Laboratory of Plateau Emission of Internal Combustion Engines, Kunming Yunnei Power Co., Ltd, Kunming, 650200, People's Republic of China. leijilin@kmust.edu.cn.

Xiaoqiang Niu (X)

Yunnan Key Laboratory of Internal Combustion Engines, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
Yunnan Key Laboratory of Plateau Emission of Internal Combustion Engines, Kunming Yunnei Power Co., Ltd, Kunming, 650200, People's Republic of China.

Xiwen Deng (X)

Yunnan Key Laboratory of Internal Combustion Engines, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
Yunnan Key Laboratory of Plateau Emission of Internal Combustion Engines, Kunming Yunnei Power Co., Ltd, Kunming, 650200, People's Republic of China.

Jun Wen (J)

Chengdu Galaxy Power Co., Ltd, Chengdu, 610505, People's Republic of China.

Zhigao Wen (Z)

Chengdu Galaxy Power Co., Ltd, Chengdu, 610505, People's Republic of China.

Classifications MeSH