A systematic review of engagement reporting in remote measurement studies for health symptom tracking.


Journal

NPJ digital medicine
ISSN: 2398-6352
Titre abrégé: NPJ Digit Med
Pays: England
ID NLM: 101731738

Informations de publication

Date de publication:
29 Jun 2022
Historique:
received: 08 02 2022
accepted: 01 06 2022
entrez: 29 6 2022
pubmed: 30 6 2022
medline: 30 6 2022
Statut: epublish

Résumé

Remote Measurement Technologies (RMTs) could revolutionise management of chronic health conditions by providing real-time symptom tracking. However, the promise of RMTs relies on user engagement, which at present is variably reported in the field. This review aimed to synthesise the RMT literature to identify how and to what extent engagement is defined, measured, and reported, and to present recommendations for the standardisation of future work. Seven databases (Embase, MEDLINE and PsycINFO (via Ovid), PubMed, IEEE Xplore, Web of Science, and Cochrane Central Register of Controlled Trials) were searched in July 2020 for papers using RMT apps for symptom monitoring in adults with a health condition, prompting users to track at least three times during the study period. Data were synthesised using critical interpretive synthesis. A total of 76 papers met the inclusion criteria. Sixty five percent of papers did not include a definition of engagement. Thirty five percent included both a definition and measurement of engagement. Four synthetic constructs were developed for measuring engagement: (i) engagement with the research protocol, (ii) objective RMT engagement, (iii) subjective RMT engagement, and (iv) interactions between objective and subjective RMT engagement. The field is currently impeded by incoherent measures and a lack of consideration for engagement definitions. A process for implementing the reporting of engagement in study design is presented, alongside a framework for definition and measurement options available. Future work should consider engagement with RMTs as distinct from the wider eHealth literature, and measure objective versus subjective RMT engagement.Registration: This review has been registered on PROSPERO [CRD42020192652].

Identifiants

pubmed: 35768544
doi: 10.1038/s41746-022-00624-7
pii: 10.1038/s41746-022-00624-7
pmc: PMC9242990
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

82

Informations de copyright

© 2022. The Author(s).

Références

Matcham, F. et al. Remote assessment of disease and relapse in major depressive disorder (RADAR-MDD): A multi-centre prospective cohort study protocol 11 Medical and Health Sciences 1103 Clinical Sciences 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Psychiatry 19, 1–11 (2019).
Naslund, J. A., Marsch, L. A., McHugo, G. J. & Bartels, S. J. Emerging mHealth and eHealth interventions for serious mental illness: a review of the literature. J. Ment. Health 24, 321–332 (2015).
pubmed: 26017625 pmcid: 4924808 doi: 10.3109/09638237.2015.1019054
Yuezhou, et al. Predicting depressive symptom severity through individuals’ nearby bluetooth device count data collected by mobile phones: preliminary longitudinal study. JMIR Mhealth Uhealth 9, e29840 https://mhealth.jmir.org/2021/7/e29840 (2021).
Zhang, Y. et al. Relationship Between Major Depression Symptom Severity And Sleep Collected Using A Wristband Wearable Device: Multicenter Longitudinal Observational Study. JMIR Mhealth Uhealth 9, e24604 (2021).
pubmed: 33843591 pmcid: 8076992 doi: 10.2196/24604
Sun, S. et al. Using smartphones and wearable devices to monitor behavioral changes during COVID-19. J. Med Internet Res 22, e19992 (2020).
pubmed: 32877352 pmcid: 7527031 doi: 10.2196/19992
Myers, D. R., Weiss, A., Rollins, M. R. & Lam, W. A. Towards remote assessment and screening of acute abdominal pain using only a smartphone with native accelerometers. Sci. Rep. 7, 1–12 (2017).
doi: 10.1038/s41598-017-13076-x
Burchert, S., Kerber, A., Zimmermann, J. & Knaevelsrud, C. Screening accuracy of a 14-day smartphone ambulatory assessment of depression symptoms and mood dynamics in a general population sample: Comparison with the PHQ-9 depression screening. PLoS One 16, 1–25 (2021).
doi: 10.1371/journal.pone.0244955
Pombo, N., Garcia, N., Bousson, K., Spinsante, S. & Chorbev, I. Pain assessment-can it be done with a computerised system? A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 13, 415 (2016).
pubmed: 27089351 pmcid: 4847077 doi: 10.3390/ijerph13040415
Jones, M. & Johnston, D. Understanding phenomena in the real world: The case for real time data collection in health services research. J. Health Serv. Res. Policy 16, 172–176 (2011).
pubmed: 21543380 doi: 10.1258/jhsrp.2010.010016
Moshe, I. et al. Predicting symptoms of depression and anxiety using smartphone and wearable data. Front. Psychiatry 12, 1–12 (2021).
doi: 10.3389/fpsyt.2021.625247
Liao, Y., Thompson, C., Peterson, S., Mandrola, J. & Beg, M. S. The future of wearable technologies and remote monitoring in health care. Am. Soc. Clin. Oncol. Educ. book. Am. Soc. Clin. Oncol. Annu. Meet. 39, 115–121 (2019).
doi: 10.1200/EDBK_238919
O’Brien, H. L. & Toms, E. G. What is user engagement? A conceptual framework for defining user engagement with technology. J. Am. Soc. Inf. Sci. Technol. 59, 938–955 (2008).
doi: 10.1002/asi.20801
Teague, S. et al. Retention strategies in longitudinal cohort studies: A systematic review and meta-analysis. BMC Med. Res. Methodol. 18, 1–22 (2018).
doi: 10.1186/s12874-018-0586-7
Druce, K. L., Dixon, W. G. & McBeth, J. Maximizing engagement in mobile health studies: lessons learned and future directions. Rheum. Dis. Clin. North Am. 45, 159–172 (2019).
pubmed: 30952390 pmcid: 6483978 doi: 10.1016/j.rdc.2019.01.004
Simblett, S. et al. Barriers to and facilitators of engagement with mhealth technology for remote measurement and management of depression: qualitative analysis. JMIR mHealth uHealth 7, e11325 (2019).
pubmed: 30698535 pmcid: 6372936 doi: 10.2196/11325
Simblett, S. K. et al. Engaging across dimensions of diversity: A cross-national perspective on mHealth tools for managing relapsing remitting and progressive multiple sclerosis. Mult. Scler. Relat. Disord. 32, 123–132 (2019).
pubmed: 31125754 doi: 10.1016/j.msard.2019.04.020
Simblett, S. K. et al. Patient perspectives on the acceptability of mHealth technology for remote measurement and management of epilepsy: A qualitative analysis. Epilepsy Behav. 97, 123–129 (2019).
pubmed: 31247523 doi: 10.1016/j.yebeh.2019.05.035
White, K. M. et al. Remote measurement in rheumatoid arthritis: qualitative analysis of patient perspectives. JMIR Form. Res 5, e22473 (2021).
pubmed: 33687333 pmcid: 7988394 doi: 10.2196/22473
Vanderboom, C. E., Vincent, A., Luedtke, C. A., Rhudy, L. M. & Bowles, K. H. Feasibility of interactive technology for symptom monitoring in patients with fibromyalgia. Pain. Manag. Nurs. 15, 557–564 (2014).
pubmed: 23434124 doi: 10.1016/j.pmn.2012.12.001
Girolamo, G. et al. The acceptability of real‐time health monitoring among community participants with depression: A systematic review and meta‐analysis of the literature. Depress. Anxiety da.23023 https://doi.org/10.1002/da.23023 (2020).
Torous, J., Lipschitz, J., Ng, M. & Firth, J. Dropout rates in clinical trials of smartphone apps for depressive symptoms: A systematic review and meta-analysis. J. Affect. Disord. 263, 413–419 (2020).
pubmed: 31969272 doi: 10.1016/j.jad.2019.11.167
Simblett, S. et al. Barriers to and facilitators of engagement with remote measurement technology for managing health: Systematic review and content analysis of findings. J. Med. Internet Res. 20, (2018).
Dogan, E., Sander, C., Wagner, X., Hegerl, U. & Kohls, E. Smartphone-based monitoring of objective and subjective data in affective disorders: Where are we and where are we going? Systematic review. J. Med. Internet Res. 19, https://doi.org/10.2196/jmir.7006 (2017).
de Angel, V. et al. Digital health tools for the passive monitoring of depression: a systematic review of methodsTitle. npj Digit. Med. 5, 3 https://doi.org/10.1038/s41746-021-00548-8 (2022).
Eysenbach, G. & Group, C. CONSORT ‐ EHEALTH checklist (V. 1. 6. 1): Information to include when reporting ehealth / mhealth trials (web ‐ based / Internet ‐ based intervention and decision aids, but also social media, serious games, DVDs, mobile applications, certain te. 1–13 (2011).
von Elm, E. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J. Clin. Epidemiol. 61, 344–349 (2008).
doi: 10.1016/j.jclinepi.2007.11.008
Sieverink, F., Kelders, S. M. & Gemert-Pijnen, V. Clarifying the concept of adherence to ehealth technology: Systematic review on when usage becomes adherence. J. Med. Internet Res. 19, 1–15 (2017).
doi: 10.2196/jmir.8578
Perski, O., Blandford, A., West, R. & Michie, S. Conceptualising engagement with digital behaviour change interventions: a systematic review using principles from critical interpretive synthesis. Transl. Behav. Med. 7, 254–267 (2017).
pubmed: 27966189 doi: 10.1007/s13142-016-0453-1
Molloy, A. & Anderson, P. L. Engagement with mobile health interventions for depression: A systematic review. Internet Inter. 26, 100454 (2021).
doi: 10.1016/j.invent.2021.100454
Li, H. et al. Use of ecological momentary assessment to detect variability in mood, sleep and stress in bipolar disorder. BMC Res. Notes 12, 791 (2019).
pubmed: 31801608 pmcid: 6894147 doi: 10.1186/s13104-019-4834-7
Juengst, S. B., Terhorst, L., Kew, C. L. & Wagner, A. K. Variability in daily self-reported emotional symptoms and fatigue measured over eight weeks in community dwelling individuals with traumatic brain injury. Brain Inj. 33, 567–573 (2019).
pubmed: 30836017 doi: 10.1080/02699052.2019.1584333
Greer, J. A. et al. Randomized trial of a smartphone mobile app to improve symptoms and adherence to oral therapy for cancer. J. Natl Compr. Cancer Netw. 18, 143–150 (2020).
Jamison, R. N., Jurcik, D. C., Edwards, R. R., Huang, C.-C. C. & Ross, E. L. A pilot comparison of a smartphone app with or without 2-way messaging among chronic pain patients: who benefits from a pain app? Clin. J. Pain. 33, 676–686 (2017).
pubmed: 27898460 doi: 10.1097/AJP.0000000000000455
Schwartz, S., Schultz, S., Reider, A. & Saunders, E. F. H. Daily mood monitoring of symptoms using smartphones in bipolar disorder: A pilot study assessing the feasibility of ecological momentary assessment. J. Affect. Disord. 191, 88–93 (2016).
pubmed: 26655117 doi: 10.1016/j.jad.2015.11.013
Bove, R. et al. Evaluating more naturalistic outcome measures. Neurol. Neuroimmunol. NeuroInflammation 2, https://doi.org/10.1212/NXI.0000000000000162 (2015).
Zia, J. et al. Feasibility and usability pilot study of a novel irritable bowel syndrome food and gastrointestinal symptom journal smartphone app. Clin. Transl. Gastroenterol. 7, e147 (2016).
pubmed: 26938478 pmcid: 4822101 doi: 10.1038/ctg.2016.9
Jamison, R. N., Mei, A. & Ross, E. L. Longitudinal trial of a smartphone pain application for chronic pain patients: Predictors of compliance and satisfaction. J. Telemed. Telecare 24, 93–100 (2018).
pubmed: 27831496 doi: 10.1177/1357633X16679049
Selter, A. et al. An mhealth app for self-management of chronic lower back pain (Limbr): Pilot study. JMIR mHealth uHealth 6, 1–12 (2018).
doi: 10.2196/mhealth.8256
Rijsbergen, M. et al. Mobile e-diary application facilitates the monitoring of patient-reported outcomes and a high treatment adherence for clinical trials in dermatology. J. Eur. Acad. Dermatol. Venereol. 34, 633–639 (2020).
pubmed: 31419338 doi: 10.1111/jdv.15872
Van Til, K., McInnis, M. G. & Cochran, A. A comparative study of engagement in mobile and wearable health monitoring for bipolar disorder. Bipolar Disord. 22, 182–190 (2020).
pubmed: 31610074 doi: 10.1111/bdi.12849
Anguera, J. A., Jordan, J. T., Castaneda, D., Gazzaley, A. & Areán, P. A. Conducting a fully mobile and randomised clinical trial for depression: Access, engagement and expense. BMJ Innov. 2, 14–21 (2016).
pubmed: 27019745 pmcid: 4789688 doi: 10.1136/bmjinnov-2015-000098
Bauer, A. M. et al. Acceptability of mHealth augmentation of Collaborative Care: A mixed methods pilot study. Gen. Hosp. Psychiatry 51, 22–29 (2018).
pubmed: 29272712 doi: 10.1016/j.genhosppsych.2017.11.010
Faurholt-Jepsen, M. et al. Daily electronic self-monitoring in bipolar disorder using smartphones - The MONARCA i trial: A randomized, placebo-controlled, single-blind, parallel group trial. Psychol. Med. 45, 2691–2704 (2015).
pubmed: 26220802 doi: 10.1017/S0033291715000410
Faurholt-Jepsen, M. et al. Smartphone-based self-monitoring in bipolar disorder: evaluation of usability and feasibility of two systems. Int. J. Bipolar Disord. 7, 1–11 (2019).
pubmed: 30610400 pmcid: 6320330 doi: 10.1186/s40345-018-0134-8
Faurholt-Jepsen, M. et al. Voice analysis as an objective state marker in bipolar disorder. Transl. Psychiatry 6, e856 (2016).
pubmed: 27434490 pmcid: 5545710 doi: 10.1038/tp.2016.123
Stanislaus, S. et al. Mood instability in patients with newly diagnosed bipolar disorder, unaffected relatives, and healthy control individuals measured daily using smartphones. J. Affect. Disord. 271, 336–344 (2020).
pubmed: 32479333 doi: 10.1016/j.jad.2020.03.049
Gustavell, T., Sundberg, K., Segersvärd, R., Wengström, Y. & Langius-Eklöf, A. Decreased symptom burden following surgery due to support from an interactive app for symptom management for patients with pancreatic and periampullary cancer. Acta Oncol. (Madr.) 58, 1307–1314 (2019).
doi: 10.1080/0284186X.2019.1633473
Niendam, T. A. et al. Enhancing early psychosis treatment using smartphone technology: A longitudinal feasibility and validity study. J. Psychiatr. Res. 96, 239–246 (2018).
pubmed: 29126059 doi: 10.1016/j.jpsychires.2017.10.017
Jamison, R. N., Mei, A., Edwards, R. R. & Ross, E. L. Efficacy of vibrating gloves for chronic hand pain due to osteoarthritis. Pain. Med. (U. S.) 19, 1044–1057 (2018).
doi: 10.1093/pm/pnx230
Crouthamel, M. et al. Using a researchkit smartphone app to collect rheumatoid arthritis symptoms from real-world participants: Feasibility study. JMIR mHealth uHealth 6, 1–14 (2018).
doi: 10.2196/mhealth.9656
Faurholt-Jepsen, M. et al. Behavioral activities collected through smartphones and the association with illness activity in bipolar disorder. Int. J. Methods Psychiatr. Res. 25, 309–323 (2016).
pubmed: 27038019 pmcid: 6860202 doi: 10.1002/mpr.1502
Hung, S. et al. Smartphone-based ecological momentary assessment for Chinese patients with depression: An exploratory study in Taiwan. Asian J. Psychiatr. 23, 131–136 (2016).
pubmed: 27969071 doi: 10.1016/j.ajp.2016.08.003
Rodriguez Hermosa, J. L. et al. Compliance and utility of a smartphone app for the detection of exacerbations in patients with chronic obstructive pulmonary disease: cohort study. JMIR mHealth uHealth 8, e15699 (2020).
pubmed: 32191213 pmcid: 7118552 doi: 10.2196/15699
Buck, B. et al. Capturing behavioral indicators of persecutory ideation using mobile technology. J. Psychiatr. Res. 116, 112–117 (2019).
pubmed: 31226579 pmcid: 6650264 doi: 10.1016/j.jpsychires.2019.06.002
Moukaddam, N., Truong, A., Cao, J., Shah, A. & Sabharwal, A. Findings from a trial of the smartphone and online usage-based evaluation for depression (SOLVD) application: What do apps really tell us about patients with depression? concordance between app-generated data and standard psychiatric questionnaires for de. J. Psychiatr. Pr. 25, 365–373 (2019).
Broderick, J. E. et al. Patient reported outcomes can improve performance status assessment: a pilot study. J. Patient-Reported Outcomes 3, https://doi.org/10.1186/s41687-019-0136-z (2019).
Lenaert, B., Neijmeijer, M., van Kampen, N., van Heugten, C. & Ponds, R. Poststroke fatigue and daily activity patterns during outpatient rehabilitation: an experience sampling method study. Arch. Phys. Med. Rehabil. 101, 1001–1008 (2020).
pubmed: 32001258 doi: 10.1016/j.apmr.2019.12.014
Faurholt-Jepsen, M. et al. Smartphone data as objective measures of bipolar disorder symptoms. Psychiatry Res 217, 124–127 (2014).
pubmed: 24679993 doi: 10.1016/j.psychres.2014.03.009
Kim, J. et al. Depression screening using daily mental-health ratings from a smartphone application for breast cancer patients. J. Med. Internet Res. 18, 1–15 (2016).
doi: 10.2196/jmir.5598
Band, R., Barrowclough, C., Caldwell, K., Emsley, R. & Wearden, A. Activity patterns in response to symptoms in patients being treated for chronic fatigue syndrome: An experience sampling methodology study. J. Div. Heal. Psychol. Am. Psychol. Assoc. 36, 264–269 (2017).
Probst, T. et al. Does tinnitus depend on time-of-day? An ecological momentary assessment study with the ‘TrackYourTinnitus’ application. Front. Aging Neurosci. 9, 1–9 (2017).
doi: 10.3389/fnagi.2017.00253
Kauer, S. D. et al. Self-monitoring using mobile phones in the early stages of adolescent depression: Randomized controlled trial. J. Med. Internet Res. 14, 1–17 (2012).
doi: 10.2196/jmir.1858
Carpenter, R. W., Lane, S. P., Bruehl, S. & Trull, T. J. Concurrent and lagged associations of prescription opioid use with pain and negative affect in the daily lives of chronic pain patients. J. Consult. Clin. Psychol. 87, 872–886 (2019).
pubmed: 31556664 pmcid: 6764518 doi: 10.1037/ccp0000402
Faurholt-Jepsen, M. et al. Is smartphone-based mood instability associated with stress, quality of life, and functioning in bipolar disorder? Bipolar Disord. 21, 611–620 (2019).
pubmed: 31081991 doi: 10.1111/bdi.12796
Ireland, D. & Andrews, N. Pain ROADMAP: a mobile platform to support activity pacing for chronic pain. Stud. Health Technol. Inform. 266, 89–94 (2019).
pubmed: 31397307
Faurholt-Jepsen, M. et al. Differences in mood instability in patients with bipolar disorder type I and II: a smartphone-based study. Int. J. Bipolar Disord. 7, https://doi.org/10.1186/s40345-019-0141-4 (2019).
Reid, S. C. et al. A mobile phone application for the assessment and management of youth mental health problems in primary care: A randomised controlled trial. BMC Fam. Pract. 12, 131 (2011).
pubmed: 22123031 pmcid: 3247177 doi: 10.1186/1471-2296-12-131
Corden, M. E. et al. MedLink: A mobile intervention to improve medication adherence and processes of care for treatment of depression in general medicine. Digit. Heal 2, 2055207616663069 (2016).
Lin, W.-C., Burke, L., Schlenk, E. A. & Yeh, C. H. Use of an ecological momentary assessment application to assess the effects of auricular point acupressure for chronic low back pain. Comput. Inform. Nurs. 37, 276–282 (2019).
pubmed: 31094917 doi: 10.1097/CIN.0000000000000478
Yang, Y. S., Ryu, G. W. & Choi, M. Factors associated with daily completion rates in a smartphone-based ecological momentary assessment study. Healthc. Inform. Res. 25, 332–337 (2019).
pubmed: 31777677 pmcid: 6859272 doi: 10.4258/hir.2019.25.4.332
Torous, J. et al. Utilizing a personal smartphone custom app to assess the patient health questionnaire-9 (phq-9) depressive symptoms in patients with major depressive disorder. JMIR Ment. Heal 2, e8 (2015).
doi: 10.2196/mental.3889
Suso-Ribera, C. et al. Validity, reliability, feasibility, and usefulness of pain monitor. Clin. J. Pain. 34, 900–908 (2018).
pubmed: 29659375 doi: 10.1097/AJP.0000000000000618
Wu, J. Q. & Cronin-Golomb, A. Temporal associations between sleep and daytime functioning in Parkinson’s disease: a smartphone-based ecological momentary assessment. Behav. Sleep. Med. 18, 560–569 (2020).
pubmed: 31199163 doi: 10.1080/15402002.2019.1629445
Beiwinkel, T. et al. Using smartphones to monitor bipolar disorder symptoms: A pilot study. JMIR Ment. Heal. 3, https://doi.org/10.2196/mental.4560 (2016).
Ben-Zeev, D. et al. Feasibility, acceptability, and preliminary efficacy of a smartphone intervention for schizophrenia. Schizophr. Bull. 40, 1244–1253 (2014).
pubmed: 24609454 pmcid: 4193714 doi: 10.1093/schbul/sbu033
Prada, P. et al. EMOTEO: A Smartphone Application for Monitoring and Reducing Aversive Tension in Borderline Personality Disorder Patients, a Pilot Study. Perspect. Psychiatr. Care 53, 289–298 (2017).
pubmed: 27439663 doi: 10.1111/ppc.12178
Sengupta, A., Beckie, T., Dutta, K., Dey, A. & Chellappan, S. A mobile health intervention system for women with coronary heart disease: usability study. JMIR Form. Res. 4, (2020).
Gustavell, T., Sundberg, K. & Langius-Eklöf, A. Using an interactive app for symptom reporting and management following pancreatic cancer surgery to facilitate person-centered care: Descriptive study. JMIR mHealth uHealth 8, 1–14 (2020).
doi: 10.2196/17855
Reid, S. C. et al. A mobile phone application for the assessment and management of youth mental health problems in primary care: Health service outcomes from a randomised controlled trial of mobiletype. BMC Fam. Pract. 14, 1 (2013).
doi: 10.1186/1471-2296-14-84
Suso-Ribera, C. et al. Validity, reliability, feasibility, and usefulness of pain monitor: a multidimensional smartphone app for daily monitoring of adults with heterogenous chronic pain. Clin. J. Pain. 34, 900–908 (2018).
pubmed: 29659375 doi: 10.1097/AJP.0000000000000618
Bandarian-Balooch, S., Martin, P. R., McNally, B., Brunelli, A. & Mackenzie, S. Electronic-diary for recording headaches, triggers, and medication use: development and evaluation. Headache 57, 1551–1569 (2017).
pubmed: 28925498 doi: 10.1111/head.13184
Mohr, D. C. et al. MedLink: a mobile intervention to address failure points in the treatment of depression in general medicine. Int. Conf. Pervasive Comput. Technol. Health. [Proc.]. Int. Conf. Pervasive Comput. Technol. Health. 2015, 100–107 (2015).
Hidalgo-Mazzei, D. et al. Psychoeducation in bipolar disorder with a SIMPLe smartphone application: Feasibility, acceptability and satisfaction. J. Affect. Disord. 200, 58–66 (2016).
pubmed: 27128358 doi: 10.1016/j.jad.2016.04.042
Ross, E. L., Jamison, R. N., Nicholls, L., Perry, B. M. & Nolen, K. D. Clinical integration of a smartphone app for patients with chronic pain: retrospective analysis of predictors of benefits and patient engagement between clinic visits. J. Med. Internet Res. 22, e16939 (2020).
pubmed: 32297871 pmcid: 7193441 doi: 10.2196/16939
Faurholt-Jepsen, M. et al. The effect of smartphone-based monitoring on illness activity in bipolar disorder: The MONARCA II randomized controlled single-blinded trial. Psychol. Med. 50, 838–848 (2020).
pubmed: 30944054 doi: 10.1017/S0033291719000710
Shafran, R. et al. Translating the intention to seek treatment into action: does symptom monitoring make a difference? results from a randomized controlled trial. Behav. Cogn. Psychother. 47, 114–128 (2019).
pubmed: 30136644 doi: 10.1017/S1352465818000498
Busk, J. et al. Forecasting mood in bipolar disorder from smartphone self-assessments: hierarchical Bayesian approach. JMIR mHealth uHealth 8, 1–14 (2020).
doi: 10.2196/15028
Barello, S. et al. eHealth for patient engagement: A Systematic Review. Front. Psychol. 6, https://doi.org/10.3389/fpsyg.2015.02013 (2016).
Faurholt-Jepsen, M. et al. Mood instability in bipolar disorder type I versus type II-continuous daily electronic self-monitoring of illness activity using smartphones. J. Affect. Disord. 186, 342–349 (2015).
pubmed: 26277270 doi: 10.1016/j.jad.2015.06.026
Busk, J. et al. Daily estimates of clinical severity of symptoms in bipolar disorder from smartphone-based self-assessments. Transl. Psychiatry 10, https://doi.org/10.1038/s41398-020-00867-6 (2020).
Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372 (2021).
Dixon-Woods, M. et al. Conducting a critical interpretive synthesis of the literature on access to healthcare by vulnerable groups. BMC Med. Res. Methodol. 6, 1–13 (2006).
doi: 10.1186/1471-2288-6-35
Depraetere, J., Vandeviver, C., Keygnaert, I. & Beken, T. V. The critical interpretive synthesis: an assessment of reporting practices. Int. J. Soc. Res. Methodol. https://doi.org/10.1080/13645579.2020.1799637 (2020).
Maastricht University. PsyMate. https://www.psymate.eu/ .
Team, T. E. EndNote. (2013).
QSR International Pty Ltd. nVivo. (2020).

Auteurs

Katie M White (KM)

Department of Psychological Medicine, King's College London, London, UK. Katie.white@kcl.ac.uk.

Charlotte Williamson (C)

King's Centre for Military Health Research, King's College London, London, UK.

Nicol Bergou (N)

Department of Psychosis Studies, King's College London, London, UK.

Carolin Oetzmann (C)

Department of Psychological Medicine, King's College London, London, UK.

Valeria de Angel (V)

Department of Psychological Medicine, King's College London, London, UK.

Faith Matcham (F)

Department of Psychological Medicine, King's College London, London, UK.

Claire Henderson (C)

Health Service & Population Research Department, King's College London, London, UK.
South London and Maudsley National Health Service Foundation Trust, London, UK.

Matthew Hotopf (M)

Department of Psychological Medicine, King's College London, London, UK.

Classifications MeSH