On the role of interference in sequence learning in Guinea baboons (Papio papio).

Forgetting Interference Memory Sequence learning Statistical learning

Journal

Learning & behavior
ISSN: 1543-4508
Titre abrégé: Learn Behav
Pays: United States
ID NLM: 101155056

Informations de publication

Date de publication:
Jun 2023
Historique:
accepted: 09 06 2022
medline: 19 6 2023
pubmed: 30 6 2022
entrez: 29 6 2022
Statut: ppublish

Résumé

It is well established that decay and interference are the two main causes of forgetting. In the present study, we specifically focus on the impact of interference on memory forgetting. To do so, we tested Guinea baboons (Papio papio) on a visuo-motor adaptation of the Serial Reaction Time task in which a target sequence is repeated, and a random sequence is interposed between repetitions, a similar situation as the one used in the Hebb repetition paradigm. In this task, one three-item sequence, the repeated sequence, was presented every second trial and interleaved with random sequences. Interference was implemented by using random sequences containing one item that was also part of the repeated sequence. In a first condition, the overlapping item was located at the same position as the repeated sequence. In a second condition, the overlapping item was located at one of the two other positions. In a third condition, there was no overlap between repeated and random sequences. Contrary to previous findings, our results reveal similar learning slopes across all three conditions, suggesting that interference did not affect sequence learning in the conditions tested. Findings are discussed in the light of previous research on sequence learning and current models of memory and statistical learning.

Identifiants

pubmed: 35768719
doi: 10.3758/s13420-022-00537-1
pii: 10.3758/s13420-022-00537-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

201-212

Informations de copyright

© 2022. The Psychonomic Society, Inc.

Références

Attout, L., Ordonez Magro, L., Szmalec, A., & Majerus, S. (2020). The developmental neural substrates of Hebb repetition learning and their link with reading ability. Human Brain Mapping. https://doi.org/10.1002/hbm.25099
Bogaerts, L., Szmalec, A., De Maeyer, M., Page, M. P. A., & Duyck, W. (2016). The involvement of long-term serial-order memory in reading development : A longitudinal study. Journal of Experimental Child Psychology, 145, 139–156. https://doi.org/10.1016/j.jecp.2015.12.008
doi: 10.1016/j.jecp.2015.12.008 pubmed: 26835842
Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory and Language, 55(4), 627–652. https://doi.org/10.1016/j.jml.2006.08.005
doi: 10.1016/j.jml.2006.08.005
Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00781
Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179–211. https://doi.org/10.1207/s15516709cog1402_1
doi: 10.1207/s15516709cog1402_1
Fagot, J., & Bonté, E. (2010). Automated testing of cognitive performance in monkeys : Use of a battery of computerized test systems by a troop of semi-free-ranging baboons (Papio papio). Behavior Research Methods, 42(2), 507–516. https://doi.org/10.3758/BRM.42.2.507
doi: 10.3758/BRM.42.2.507 pubmed: 20479182
Fagot, J., & Paleressompoulle, D. (2009). Automatic testing of cognitive performance in baboons maintained in social groups. Behavior Research Methods, 41(2), 396–404. https://doi.org/10.3758/BRM.41.2.396
doi: 10.3758/BRM.41.2.396 pubmed: 19363180
Hauser, M. D., Newport, E. L., & Aslin, R. N. (2001). Segmentation of the speech stream in a non-human primate : Statistical learning in cotton-top tamarins. Cognition, 78(3), B53–B64. https://doi.org/10.1016/s0010-0277(00)00132-3
doi: 10.1016/s0010-0277(00)00132-3 pubmed: 11124355
Hebb, D. (1961). Distinctive features of learning in the higher animal. In J. F. Delafresnaye (Ed.), Brain mechanisms and learning. Blackwell.
Heimbauer, L. A., Conway, C. M., Christiansen, M. H., Beran, M. J., & Owren, M. J. (2012). A Serial Reaction Time (SRT) task with symmetrical joystick responding for nonhuman primates. Behavior Research Methods, 44(3), 733–741. https://doi.org/10.3758/s13428-011-0177-6
doi: 10.3758/s13428-011-0177-6 pubmed: 22180104
Hitch, G. J., Flude, B., & Burgess, N. (2009). Slave to the rhythm : Experimental tests of a model for verbal short-term memory and long-term sequence learning. Journal of Memory and Language, 61(1), 97–111. https://doi.org/10.1016/j.jml.2009.02.004
doi: 10.1016/j.jml.2009.02.004
JASP Team. (2021). JASP (Version 0.16)[Computer software].
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford University Press.
Kruschke, J. K., Aguinis, H., & Joo, H. (2012). The time has come : Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15(4), 722–752. https://doi.org/10.1177/1094428112457829
doi: 10.1177/1094428112457829
Locurto, C., Gagne, M., & Nutile, L. (2010). Characteristics of implicit chaining in cotton-top tamarins (Saguinus oedipus). Animal Cognition, 13(4), 617–629. https://doi.org/10.1007/s10071-010-0312-2
doi: 10.1007/s10071-010-0312-2 pubmed: 20140693
Locurto, C., Dillon, L., Collins, M., Conway, M., & Cunningham, K. (2013). Implicit chaining in cotton-top tamarins (Saguinus oedipus) with elements equated for probability of reinforcement. Animal Cognition, 16(4), 611–625. https://doi.org/10.1007/s10071-013-0598-y
doi: 10.1007/s10071-013-0598-y pubmed: 23344718 pmcid: 3665734
Majerus, S., Martinez Perez, T., & Oberauer, K. (2012). Two distinct origins of long-term learning effects in verbal short-term memory. Journal of Memory and Language, 66(1), 38–51. https://doi.org/10.1016/j.jml.2011.07.006
doi: 10.1016/j.jml.2011.07.006
Malassis, R., Rey, A., & Fagot, J. (2018). Non-adjacent Dependencies Processing in Human and Non-human Primates. Cognitive Science, 42(5), 1677–1699. https://doi.org/10.1111/cogs.12617
doi: 10.1111/cogs.12617
Minier, L., Fagot, J., & Rey, A. (2016). The Temporal Dynamics of Regularity Extraction in Non-Human Primates. Cognitive Science, 40(4), 1019–1030. https://doi.org/10.1111/cogs.12279
doi: 10.1111/cogs.12279 pubmed: 26303229
Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning : Evidence from performance measures. Cognitive Psychology, 19(1), 1–32. https://doi.org/10.1016/0010-0285(87)90002-8
doi: 10.1016/0010-0285(87)90002-8
Oberauer, K., & Kliegl, R. (2006). A formal model of capacity limits in working memory. Journal of Memory and Language, 55(4), 601–626. https://doi.org/10.1016/j.jml.2006.08.009
doi: 10.1016/j.jml.2006.08.009
Ordonez Magro, L., Attout, L., Majerus, S., & Szmalec, A. (2018). Short-and long-term memory determinants of novel word form learning. Cognitive Development, 47, 146–157. https://doi.org/10.1016/j.cogdev.2018.06.002
doi: 10.1016/j.cogdev.2018.06.002
Ordonez Magro, L., Majerus, S., Attout, L., Poncelet, M., Smalle, E. H. M., & Szmalec, A. (2020). The contribution of serial order short-term memory and long-term learning to reading acquisition : A longitudinal study. Developmental Psychology, 56(9), 1671–1683. https://doi.org/10.1037/dev0001043
doi: 10.1037/dev0001043 pubmed: 32614211
Ordonez Magro, L., Majerus, S., Attout, L., Poncelet, M., Smalle, E. H. M., & Szmalec, A. (2021). Do serial order short-term memory and long-term learning abilities predict spelling skills in school-age children? Cognition, 206, 104479. https://doi.org/10.1016/j.cognition.2020.104479
doi: 10.1016/j.cognition.2020.104479 pubmed: 33157381
Ordonez Magro, L., Fagot, J., Grainger, J., & Rey, A. (revision submitted). The limits of forgetting in sequential statistical learning. Cognitive Science.
Page, M. P. A., & Norris, D. (1998). The Primacy Model : A New Model of Immediate Serial Recall. Psychological Review, 105(4), 761–781.
doi: 10.1037/0033-295X.105.4.761-781 pubmed: 9830378
Page, M. P. A., Cumming, N., Norris, D., McNeil, A. M., & Hitch, G. J. (2013). Repetition-spacing and item-overlap effects in the Hebb repetition task. Journal of Memory and Language, 69(4), 506–526. https://doi.org/10.1016/j.jml.2013.07.001
doi: 10.1016/j.jml.2013.07.001
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning : One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–238. https://doi.org/10.1016/j.tics.2006.03.006
doi: 10.1016/j.tics.2006.03.006 pubmed: 16616590
Perruchet, P., & Vinter, A. (1998). PARSER : A Model for Word Segmentation. Journal of Memory and Language, 39(2), 246–263. https://doi.org/10.1006/jmla.1998.2576
doi: 10.1006/jmla.1998.2576
Procyk, E., Ford Dominey, P., Amiez, C., & Joseph, J. P. (2000). The effects of sequence structure and reward schedule on serial reaction time learning in the monkey. Brain Research. Cognitive Brain Research, 9(3), 239–248. https://doi.org/10.1016/s0926-6410(00)00002-1
doi: 10.1016/s0926-6410(00)00002-1 pubmed: 10808135
Rey, A., Minier, L., Malassis, R., Bogaerts, L., & Fagot, J. (2019). Regularity Extraction Across Species : Associative Learning Mechanisms Shared by Human and Non-Human Primates. Topics in Cognitive Science, 11(3), 573–586. https://doi.org/10.1111/tops.12343
doi: 10.1111/tops.12343 pubmed: 29785844
Rey, A., Bogaerts, L., Tosatto, L., Bonafos, G., Franco, A., & Favre, B. (2020). Detection of regularities in a random environment. Quarterly Journal of Experimental Psychology, 73(12), 2106–2118. https://doi.org/10.1177/1747021820941356
doi: 10.1177/1747021820941356
Rey, A., Fagot, J., Mathy, F., Lazartigues, L., Tosatto, L., Bonafos, G., et al. (2022). Learning higher-order transitional probabilities in nonhuman primates. Cognitive Science, 46(4), e13121. https://doi.org/10.1111/cogs.13121
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science (New York, N.Y.), 274(5294), 1926–1928. https://doi.org/10.1126/science.274.5294.1926
doi: 10.1126/science.274.5294.1926 pubmed: 8943209
Saint-Aubin, J., Guérard, K., Fiset, S., & Losier, M.-C. (2015). Learning multiple lists at the same time in the Hebb repetition effect. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 69(1), 89–94. https://doi.org/10.1037/cep0000030
doi: 10.1037/cep0000030 pubmed: 25730643
Smalle, E. H. M., Bogaerts, L., Simonis, M., Duyck, W., Page, M. P. A., Edwards, M. G., & Szmalec, A. (2016). Can Chunk Size Differences Explain Developmental Changes in Lexical Learning? Frontiers in Psychology, 6, 1925. https://doi.org/10.3389/fpsyg.2015.01925
doi: 10.3389/fpsyg.2015.01925 pubmed: 26779065 pmcid: 4703851
Szmalec, A., Loncke, M., Page, M. P. A., & Duyck, W. (2011). Order or disorder ? Impaired Hebb learning in dyslexia. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37(5), 1270–1279. https://doi.org/10.1037/a0023820
doi: 10.1037/a0023820 pubmed: 21604915
Tosatto, L., Fagot, J., Nemeth, D., & Rey, A. (2022). The evolution of chunks in sequence learning. Cognitive Science, 46(4), e13124.  https://doi.org/10.1111/cogs.13124
Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems ofp values. Psychonomic Bulletin & Review, 14(5), 779–804.
doi: 10.3758/BF03194105
Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q. F., Dropmann, D., Boutin, B., Meerhoff, F., Knight, P., Raj, A., van Kesteren, E.-J., van Doorn, J., Šmíra, M., Epskamp, S., Etz, A., Matzke, D., et al. (2018). Bayesian inference for psychology. Part II : Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58–76. https://doi.org/10.3758/s13423-017-1323-7
doi: 10.3758/s13423-017-1323-7
Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen-Wilson, W. D., Smith, K., & Petkov, C. I. (2013). Auditory artificial grammar learning in macaque and marmoset monkeys. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(48), 18825–18835. https://doi.org/10.1523/JNEUROSCI.2414-13.2013
doi: 10.1523/JNEUROSCI.2414-13.2013 pubmed: 24285889
Wilson, B., Smith, K., & Petkov, C. I. (2015). Mixed-complexity artificial grammar learning in humans and macaque monkeys : Evaluating learning strategies. The European Journal of Neuroscience, 41(5), 568–578. https://doi.org/10.1111/ejn.12834
doi: 10.1111/ejn.12834 pubmed: 25728176 pmcid: 4493314

Auteurs

Laura Ordonez Magro (L)

Laboratoire de Psychologie Cognitive and CNRS, Aix-Marseille Université, 3, place Victor Hugo, Case D, 13331, Marseille Cedex 03, France. laura.ordonezmagro@gmail.com.

Joël Fagot (J)

Laboratoire de Psychologie Cognitive and CNRS, Aix-Marseille Université, 3, place Victor Hugo, Case D, 13331, Marseille Cedex 03, France.
Station de Primatologie-Celphedia, 13790, Rousset, France.

Jonathan Grainger (J)

Laboratoire de Psychologie Cognitive and CNRS, Aix-Marseille Université, 3, place Victor Hugo, Case D, 13331, Marseille Cedex 03, France.

Arnaud Rey (A)

Laboratoire de Psychologie Cognitive and CNRS, Aix-Marseille Université, 3, place Victor Hugo, Case D, 13331, Marseille Cedex 03, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH