Neuromorphic Signal Filter for Robot Sensoring.

CMOS filter low-frequency neuromorphic sensoring

Journal

Frontiers in neurorobotics
ISSN: 1662-5218
Titre abrégé: Front Neurorobot
Pays: Switzerland
ID NLM: 101477958

Informations de publication

Date de publication:
2022
Historique:
received: 26 03 2022
accepted: 09 05 2022
entrez: 30 6 2022
pubmed: 1 7 2022
medline: 1 7 2022
Statut: epublish

Résumé

Noise management associated with input signals in sensor devices arises as one of the main problems limiting robot control performance. This article introduces a novel neuromorphic filter model based on a leaky integrate and fire (LIF) neural model cell, which encodes the primary information from a noisy input signal and delivers an output signal with a significant noise reduction in practically real-time with energy-efficient consumption. A new approach for neural decoding based on the neuron-cell spiking frequency is introduced to recover the primary signal information. The simulations conducted on the neuromorphic filter demonstrate an outstanding performance of white noise rejecting while preserving the original noiseless signal with a low information loss. The proposed filter model is compatible with the CMOS technology design methodologies for implementing low consumption smart sensors with applications in various fields such as robotics and the automotive industry demanded by Industry 4.0.

Identifiants

pubmed: 35770276
doi: 10.3389/fnbot.2022.905313
pmc: PMC9234973
doi:

Types de publication

Journal Article

Langues

eng

Pagination

905313

Informations de copyright

Copyright © 2022 García-Sebastián, Ponce-Ponce, Sossa, Rubio-Espino and Martínez-Navarro.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer AZ declared a shared affiliation with the authors to the handling editor at the time of review.

Références

Nat Methods. 2020 Mar;17(3):261-272
pubmed: 32015543
Front Neurosci. 2021 Mar 04;15:638474
pubmed: 33746705
Nat Commun. 2021 May 25;12(1):3095
pubmed: 34035249
Front Neurosci. 2011 Mar 17;5:26
pubmed: 21442012
Neural Netw. 2008 Mar-Apr;21(2-3):524-34
pubmed: 18262751
Brain Res Bull. 1999 Nov-Dec;50(5-6):303-4
pubmed: 10643408

Auteurs

Luis M García-Sebastián (LM)

Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City, México.

Victor H Ponce-Ponce (VH)

Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City, México.

Humberto Sossa (H)

Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City, México.

Elsa Rubio-Espino (E)

Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City, México.

José A Martínez-Navarro (JA)

Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City, México.

Classifications MeSH