Artificial intelligence in gastrointestinal endoscopy - Evolution to a new era.


Journal

Revista espanola de enfermedades digestivas
ISSN: 1130-0108
Titre abrégé: Rev Esp Enferm Dig
Pays: Spain
ID NLM: 9007566

Informations de publication

Date de publication:
10 2022
Historique:
pubmed: 1 7 2022
medline: 18 10 2022
entrez: 30 6 2022
Statut: ppublish

Résumé

Artificial intelligence (AI) systems based on machine learning have evolved in the last few years with an increasing applicability in gastrointestinal endoscopy. Thanks to AI, an image (input) can be transformed into a clinical decision (output). Although AI systems have been initially studied to improve detection (CADe) and characterization of colorectal lesions (CADx), other indications are being currently investigated as detection of blind spots, scope guidance, or delineation/measurement of lesions. The objective of these review is to summarize the current evidence on applicability of AI systems in gastrointestinal endoscopy, highlight strengths and limitations of the technology and review regulatory and ethical aspects for its general implementation in gastrointestinal endoscopy.

Identifiants

pubmed: 35770604
doi: 10.17235/reed.2022.8961/2022
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

605-615

Auteurs

Oswaldo Ortiz Zúñiga (O)

Gastroenterología, Hospital Clínic Barcelona, España.

María Glòria Fernández Esparrach (MG)

Gastroenterología, Hospital Clínic Barcelona, España.

María Daca (M)

Gastroenterología, Hospital Clínic Barcelona, España.

María Pellisé (M)

Gastroenterología, Hospital Clínic Barcelona, España.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH