Huntington's disease and neurovascular structure of retina.
Huntington disease
Neurodegenerative diseases
Optical coherence
Retina
Tomography
Journal
Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
ISSN: 1590-3478
Titre abrégé: Neurol Sci
Pays: Italy
ID NLM: 100959175
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
received:
08
05
2022
accepted:
17
06
2022
pubmed:
1
7
2022
medline:
17
9
2022
entrez:
30
6
2022
Statut:
ppublish
Résumé
Retinal biomarkers in neurodegenerative disorders have attracted much attention in recent years. Recent studies have reported visual dysfunction in Huntington's disease (HD). However, little is known about retinal structural changes in HD. A total of 50 subjects, including 25 motor-manifest HD patients and 25 gender- and age-matched controls, were enrolled. Unified Huntington's Disease Rating Score-Motor part was assessed in HD patients. Spectral-domain Optical Coherence Tomography (SD-OCT) was used to evaluate the macular thickness and peripapillary retinal nerve fiber layer (pRNFL). Superficial and deep capillary plexus densities were measured using OCT angiography (OCTA). To account for inter-eye correlation, generalized estimating equation (GEE) model was used. HD patients had a significant reduction in macular thickness in both inner and outer superior sectors and the inferior outer sector. Inferior pRNFLs were significantly decreased in thickness. There was no significant difference in retinal capillary plexus density between the two groups. Age and disease duration were negatively correlated with macular thickness in HD patients. However, the severity of motor involvement was not correlated with SD-OCT or OCTA parameters. We observed attenuated pRNFL and macular retinal thickness in patients with HD, independent of macular capillary plexus parameters. It can support the hypothesis that the retina may be a potential biomarker for monitoring the neurodegenerative process in HD.
Sections du résumé
BACKGROUND
BACKGROUND
Retinal biomarkers in neurodegenerative disorders have attracted much attention in recent years. Recent studies have reported visual dysfunction in Huntington's disease (HD). However, little is known about retinal structural changes in HD.
METHODS
METHODS
A total of 50 subjects, including 25 motor-manifest HD patients and 25 gender- and age-matched controls, were enrolled. Unified Huntington's Disease Rating Score-Motor part was assessed in HD patients. Spectral-domain Optical Coherence Tomography (SD-OCT) was used to evaluate the macular thickness and peripapillary retinal nerve fiber layer (pRNFL). Superficial and deep capillary plexus densities were measured using OCT angiography (OCTA). To account for inter-eye correlation, generalized estimating equation (GEE) model was used.
RESULTS
RESULTS
HD patients had a significant reduction in macular thickness in both inner and outer superior sectors and the inferior outer sector. Inferior pRNFLs were significantly decreased in thickness. There was no significant difference in retinal capillary plexus density between the two groups. Age and disease duration were negatively correlated with macular thickness in HD patients. However, the severity of motor involvement was not correlated with SD-OCT or OCTA parameters.
CONCLUSIONS
CONCLUSIONS
We observed attenuated pRNFL and macular retinal thickness in patients with HD, independent of macular capillary plexus parameters. It can support the hypothesis that the retina may be a potential biomarker for monitoring the neurodegenerative process in HD.
Identifiants
pubmed: 35771295
doi: 10.1007/s10072-022-06232-3
pii: 10.1007/s10072-022-06232-3
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5933-5941Informations de copyright
© 2022. Fondazione Società Italiana di Neurologia.
Références
Roos RA (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5(1):1–8. https://doi.org/10.1186/1750-1172-5-40
doi: 10.1186/1750-1172-5-40
Andrade C, Beato J, Monteiro A, Costa A, Penas S, Guimarães J, Reis FF, Garrett C (2016) Spectral-domain optical coherence tomography as a potential biomarker in Huntington’s disease. Mov Disord 31(3):377–383. https://doi.org/10.1002/mds.26486
doi: 10.1002/mds.26486
pubmed: 26853218
Di Maio LG, Montorio D, Peluso S, Dolce P, Salvatore E, De Michele G, Cennamo G (2021) Optical coherence tomography angiography findings in Huntington’s disease. Neurol Sci 42(3):995–1001. https://doi.org/10.1007/s10072-020-04611-2
doi: 10.1007/s10072-020-04611-2
pubmed: 32700226
Kersten HM, Danesh-Meyer HV, Kilfoyle DH, Roxburgh RH (2015) Optical coherence tomography findings in Huntington’s disease: a potential biomarker of disease progression. J Neurol 262(11):2457–2465. https://doi.org/10.1007/s00415-015-7869-2
doi: 10.1007/s00415-015-7869-2
pubmed: 26233693
Gatto E, Parisi V, Persi G, Fernandez Rey E, Cesarini M, Luis Etcheverry J, Rivera P, Squitieri F (2018) Optical coherence tomography (OCT) study in Argentinean Huntington’s disease patients. Int J Neurosci 128(12):1157–1162. https://doi.org/10.1080/00207454.2018.1489807
doi: 10.1080/00207454.2018.1489807
pubmed: 29912591
Mason SL, Barker RA (2016) Novel targets for Huntington’s disease: future prospects. Degener Neurol Neuromuscul Dis 6:25. https://doi.org/10.2147/DNND.S83808
doi: 10.2147/DNND.S83808
pubmed: 30050366
pmcid: 6053088
Ha AD, Fung VS (2012) Huntington’s disease. Curr Opin Neurol 25(4):491–498. https://doi.org/10.1097/WCO.0b013e3283550c97
doi: 10.1097/WCO.0b013e3283550c97
pubmed: 22772878
Crair MC, Mason CA (2016) Reconnecting eye to brain. J Neurosci 36(42):10707–10722. https://doi.org/10.1523/JNEUROSCI.1711-16.2016
doi: 10.1523/JNEUROSCI.1711-16.2016
pubmed: 27798125
pmcid: 5083002
Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L (2016) Brain and retinal pericytes: origin, function and role. Front Cell Neurosci 10:20. https://doi.org/10.3389/fncel.2016.00020
doi: 10.3389/fncel.2016.00020
pubmed: 26869887
pmcid: 4740376
Doustar J, Torbati T, Black KL, Koronyo Y, Koronyo-Hamaoui M (2017) Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases. Front Neurol 8:701. https://doi.org/10.3389/fneur.2017.00701
doi: 10.3389/fneur.2017.00701
pubmed: 29312125
pmcid: 5742098
Moinuddin O, Khandwala NS, Young KZ, Sathrasala SK, Barmada SJ, Albin RL, Besirli CG (2021) Role of optical coherence tomography in identifying retinal biomarkers in frontotemporal dementia: a review. Neurol Clin Pract 11(4):e516–e523. https://doi.org/10.1212/CPJ.0000000000001041
doi: 10.1212/CPJ.0000000000001041
pubmed: 34484950
pmcid: 8382404
Sengupta P, Dutta K, Ghosh S, Mukherjee A, Pal S, Basu D (2018) Optical coherence tomography findings in patients of Parkinson’s disease an Indian perspective. Ann Indian Acad Neurol 21(2):150. https://doi.org/10.4103/aian.AIAN_152_18
doi: 10.4103/aian.AIAN_152_18
pubmed: 30122842
pmcid: 6073973
Abd Hamid MR, Hitam W-HW, Abd Halim S (2021) Retinal nerve fiber layer and macular thickness in Parkinson’s disease patients. Cureus 13(7):e16224. https://doi.org/10.7759/cureus.16224
doi: 10.7759/cureus.16224
pubmed: 34367824
pmcid: 8343423
Schneider M, Müller H-P, Lauda F, Tumani H, Ludolph AC, Kassubek J, Pinkhardt EH, Retinal single-layer analysis in Parkinsonian syndromes (2014) an optical coherence tomography study. J Neural Transm 121(1):41–47. https://doi.org/10.1007/s00702-013-1072-3
doi: 10.1007/s00702-013-1072-3
pubmed: 23907408
Chan VT, Sun Z, Tang S, Chen LJ, Wong A, Tham CC, Wong TY, Chen C, Ikram MK, Whitson HE (2019) Spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmology 126(4):497–510. https://doi.org/10.1016/j.ophtha.2018.08.009
doi: 10.1016/j.ophtha.2018.08.009
pubmed: 30114417
Dhalla A, Pallikadavath S, Hutchinson CV (2019) Visual dysfunction in Huntington’s disease: a systematic review. J Huntingtons Dis 8(2):233–242. https://doi.org/10.3233/JHD-180340
doi: 10.3233/JHD-180340
pubmed: 30932892
Hui J, Zhao Y, Yu S, Liu J, Chiu K, Wang Y (2021) Detection of retinal changes with optical coherence tomography angiography in mild cognitive impairment and Alzheimer’s disease patients: a meta-analysis. PLoS ONE 16(8):e0255362. https://doi.org/10.1371/journal.pone.0255362
doi: 10.1371/journal.pone.0255362
pubmed: 34379663
pmcid: 8357127
Tsokolas G, Tsaousis KT, Diakonis VF, Matsou A, Tyradellis S (2020) Optical coherence tomography angiography in neurodegenerative diseases: a review. Eye Brain 12:73. https://doi.org/10.2147/EB.S193026
doi: 10.2147/EB.S193026
pubmed: 32765149
pmcid: 7368556
Siesling S, van Vugt JP, Zwinderman KA, Kieburtz K, Roos RA (1998) Unified Huntington’s disease rating scale: a follow up. Mov Disord 13(6):915–919. https://doi.org/10.1002/mds.870130609
doi: 10.1002/mds.870130609
pubmed: 9827615
Ghasemi Falavarjani K, Mirshahi R, Ghasemizadeh S, Sardarinia M (2020) Stepwise segmentation error correction in optical coherence tomography angiography images of patients with diabetic macular edema. Ther Adv Ophthalmol 27:12. https://doi.org/10.1177/2515841420947931
doi: 10.1177/2515841420947931
Zou J, Liu K, Li F, Xu Y, Shen L, Xu H (2020) Combination of optical coherence tomography (OCT) and OCT angiography increases diagnostic efficacy of Parkinson’s disease. Quant Imaging Med Surg 10(10):1930. https://doi.org/10.21037/qims-20-460
doi: 10.21037/qims-20-460
pubmed: 33014726
pmcid: 7495313
Sevim DG, Unlu M, Gultekin M, Karaca C (2019) Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington’s disease as a potential biomarker. Int Ophthalmol 39(3):611–621. https://doi.org/10.1007/s10792-018-0857-7
doi: 10.1007/s10792-018-0857-7
Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112(10):1860–1867. https://doi.org/10.1016/S1388-2457(01)00620-4
doi: 10.1016/S1388-2457(01)00620-4
pubmed: 11595144
Lu Y, Li Z, Zhang X, Ming B, Jia J, Wang R, Ma D (2010) Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: evidence in optical coherence tomography. Neurosci Lett 480(1):69–72. https://doi.org/10.1016/j.neulet.2010.06.006
doi: 10.1016/j.neulet.2010.06.006
pubmed: 20609426
Kesler A, Vakhapova V, Korczyn AD, Naftaliev E, Neudorfer M (2011) Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin Neurol Neurosurg 113(7):523–526. https://doi.org/10.1016/j.clineuro.2011.02.014
doi: 10.1016/j.clineuro.2011.02.014
pubmed: 21454010
Chi Y, Wang Y-h, Yang L (2010) The investigation of retinal nerve fiber loss in Alzheimer’s disease. [Zhonghua yan ke za zhi] Chinese J Ophthalmol 46(2):134–139
Kromer R, Serbecic N, Hausner L, Aboul-Enein F, Froelich L, Beutelspacher S (2014) Detection of retinal nerve fiber layer defects in Alzheimer’s disease using SD-OCT. Front Psych 5:22. https://doi.org/10.3389/fpsyt.2014.00022
doi: 10.3389/fpsyt.2014.00022
Zabel P, Kałużny JJ, Wiłkość-Dębczyńska M, Gębska-Tołoczko M, Suwała K, Kucharski R, Araszkiewicz A (2019) Peripapillary retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a comparison of eyes of patients with Alzheimer’s disease, primary open-angle glaucoma, and preperimetric glaucoma and healthy controls. Med Sci Monit 25:1001. https://doi.org/10.12659/MSM.914889
doi: 10.12659/MSM.914889
pubmed: 30720005
pmcid: 6373520
Yu J-G, Feng Y-F, Xiang Y, Huang J-H, Savini G, Parisi V, Yang W-J, Fu X-A (2014) Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS ONE 9(1):e85718. https://doi.org/10.1371/journal.pone.0085718
doi: 10.1371/journal.pone.0085718
pubmed: 24465663
pmcid: 3897496
Rohani M, Langroodi AS, Ghourchian S, Falavarjani KG, SoUdi R, Shahidi G (2013) Retinal nerve changes in patients with tremor dominant and akinetic rigid Parkinson’s disease. Neurol Sci 34(5):689–693. https://doi.org/10.1007/s10072-012-1125-7
doi: 10.1007/s10072-012-1125-7
pubmed: 22661077
Birkeldh U, Manouchehrinia A, Hietala MA, Hillert J, Olsson T, Piehl F, Kockum IS, Brundin L, Zahavi O, Wahlberg-Ramsay M (2017) The temporal retinal nerve fiber layer thickness is the most important optical coherence tomography estimate in multiple sclerosis. Front Neurol 8:675. https://doi.org/10.3389/fneur.2017.00675
doi: 10.3389/fneur.2017.00675
pubmed: 29326643
pmcid: 5733353
Gómez-Esteban JC, Lezcano E, Zarranz JJ, Velasco F, Garamendi I, Pérez T, Tijero B (2007) Monozygotic twins suffering from Huntington’s disease show different cognitive and behavioural symptoms. Eur Neurol 57(1):26–30. https://doi.org/10.1159/000097006
doi: 10.1159/000097006
pubmed: 17108691
Georgiou N, Bradshaw JL, Chiu E, Tudor A, O’Gorman L, Phillips JG (1999) Differential clinical and motor control function in a pair of monozygotic twins with Huntington’s disease. Mov Disord 14(2):320–325. https://doi.org/10.1002/1531-8257(199903)14:2%3c320::AID-MDS1018%3e3.0.CO;2-Z
doi: 10.1002/1531-8257(199903)14:2<320::AID-MDS1018>3.0.CO;2-Z
pubmed: 10091627
Ferrari L, Huang S-C, Magnani G, Ambrosi A, Comi G, Leocani L (2017) Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal dementia as in Alzheimer’s disease. J Alzheimers Dis 56(3):1101–1107. https://doi.org/10.3233/JAD-160886
doi: 10.3233/JAD-160886
pubmed: 28106555
Chan ST, Mercaldo ND, Kwong KK, Hersch SM, Rosas HD (2021) Impaired cerebrovascular reactivity in Huntington’s disease. Front Physiol 12:663898. https://doi.org/10.3389/fphys.2021.663898
doi: 10.3389/fphys.2021.663898
pubmed: 34366879
pmcid: 8334185
Bodis-Wollner I (2013) Foveal vision is impaired in Parkinson’s disease. Parkinsonism Relat Disord 19(1):1–14. https://doi.org/10.1016/j.parkreldis.2012.07.012
doi: 10.1016/j.parkreldis.2012.07.012
pubmed: 22998939
Polo V, Rodrigo MJ, Garcia-Martin E, Otin S, Larrosa JM, Fuertes MI, Bambo MP, Pablo LE, Satue M (2017) Visual dysfunction and its correlation with retinal changes in patients with Alzheimer’s disease. Eye (Lond) 31(7):1034–1041. https://doi.org/10.1038/eye.2017.23
doi: 10.1038/eye.2017.23
Nanetti L, Contarino VE, Castaldo A, Sarro L, Bachoud-Levi A-C, Giavazzi M, Frittoli S, Ciammola A, Rizzo E, Gellera C (2018) Cortical thickness, stance control, and arithmetic skill: an exploratory study in premanifest Huntington disease. Parkinsonism Relat Disord 51:17–23. https://doi.org/10.1016/j.parkreldis.2018.02.033
doi: 10.1016/j.parkreldis.2018.02.033
pubmed: 29496355
Odish O, Reijntjes R, van den Bogaard S, Roos R, Leemans A (2018) Progressive microstructural changes of the occipital cortex in Huntington’s disease. Brain Imaging Behav 12(6):1786–1794. https://doi.org/10.1007/s11682-018-9849-5
doi: 10.1007/s11682-018-9849-5
pubmed: 29492750
pmcid: 6302057
Johnson EB, Rees EM, Labuschagne I, Durr A, Leavitt BR, Roos RA, Reilmann R, Johnson H, Hobbs NZ, Langbehn DR (2015) The impact of occipital lobe cortical thickness on cognitive task performance: an investigation in Huntington’s disease. Neuropsychologia 79:138–146. https://doi.org/10.1016/j.neuropsychologia.2015.10.033
doi: 10.1016/j.neuropsychologia.2015.10.033
pubmed: 26519555