Dried Blood Spots technology for veterinary applications and biological investigations: technical aspects, retrospective analysis, ongoing status and future perspectives.
Dried blood spots
Dried matrix spots
Epidemiological surveys
Genetic investigations
Sero-surveillance
Veterinary diagnostics
Journal
Veterinary research communications
ISSN: 1573-7446
Titre abrégé: Vet Res Commun
Pays: Switzerland
ID NLM: 8100520
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
19
01
2022
accepted:
13
06
2022
pubmed:
1
7
2022
medline:
25
8
2022
entrez:
30
6
2022
Statut:
ppublish
Résumé
Dried Blood Spots (DBS) technology has become a valuable tool in medical studies, however, in veterinary and biological research DBS technology applications are still limited. Up-to-date no review has comprehensively integrated all the evidence existing across the fields, technologies and animal species. In this paper we summarize the current applications of DBS technology in the mentioned areas, and provide a scope of different types of dried sample carriers (cellulose and non-cellulose), sampling devices, applicable methods for analyte extraction and detection. Mammals, birds, insects and other species are represented as the study objects. Besides the blood, the review considers a variety of specimens, such as milk, saliva, tissue samples and others. The main applications of dried samples highlighted in the review include epidemiological surveys and monitoring for infections agents or specific antibodies for disease/vaccination control in households and wildlife. Besides the genetic investigations, the paper describes detection of environmental contaminants, pregnancy diagnosis and many other useful applications of animal dried samples. The paper also analyses dried sample stability and storage conditions for antibodies, viruses and other substances. Finally, recent developments and future research for DBS technology in veterinary medicine and biological sciences are discussed.
Identifiants
pubmed: 35771305
doi: 10.1007/s11259-022-09957-w
pii: 10.1007/s11259-022-09957-w
pmc: PMC9244892
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
655-698Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Abbott RC, Hudak R, Mondesire R, Baeten LA, Russell RE, Rocke TE (2014) A rapid field test for sylvatic plague exposure in wild animals. J Wildl Dis 50:384–388. https://doi.org/10.7589/2013-07-174
doi: 10.7589/2013-07-174
pubmed: 24484483
Abdelwhab EM, Lüschow D, Harder TC, Hafez HM (2011) The use of FTA® filter papers for diagnosis of avian influenza virus. J Virol Methods 174:120–122. https://doi.org/10.1016/j.jviromet.2011.03.017
doi: 10.1016/j.jviromet.2011.03.017
pubmed: 21419801
Adams E, Hanson RP (1956) A procedure for adsorbing virus neutralizing antibodies on paper disks. J Bacteriol 72:572. https://doi.org/10.1128/jb.72.4.572-572.1956
doi: 10.1128/jb.72.4.572-572.1956
pubmed: 13366969
pmcid: 357957
Adams ER, Malele II, Msangi AR, Gibson WC (2006) Trypanosome identification in wild tsetse populations in Tanzania using generic primers to amplify the ribosomal RNA ITS-1 region. Acta Trop 100:103–109. https://doi.org/10.1016/j.actatropica.2006.10.002
doi: 10.1016/j.actatropica.2006.10.002
pubmed: 17109808
Adams ER, Hamilton PB, Malele II, Gibson WC (2008) The identification, diversity and prevalence of trypanosomes in field caught tsetse in Tanzania using ITS-1 primers and fluorescent fragment length barcoding. Infect Genet Evol 8:439–444. https://doi.org/10.1016/j.meegid.2007.07.013
doi: 10.1016/j.meegid.2007.07.013
pubmed: 17826361
Afshar A, Dulac GC, Riva J (1992) Comparison of blocking dot ELISA and competitive ELISA, using a monoclonal antibody for detection of bluetongue virus antibodies in cattle. Vet Microbiol 31:33–39. https://doi.org/10.1016/0378-1135(92)90139-k
doi: 10.1016/0378-1135(92)90139-k
pubmed: 1319625
Afshar A, Thomas FC, Wright PF, Shapiro JL, Shettigara PT, Anderson J (1987) Comparison of competitive and indirect enzyme-linked immunosorbent assays for detection of bluetongue virus antibodies in serum and whole blood. J Clin Microbiol 25:1705–1710. https://doi.org/10.1128/jcm.25.9.1705-1710.1987
doi: 10.1128/jcm.25.9.1705-1710.1987
pubmed: 2821063
pmcid: 269312
Ahlm C, Alexeyev OA, Elgh F, Aava B, Wadell G, Tarnvik A, Juto P, Palo T (1997) High prevalence of hantavirus antibodies in bank voles (Clethrionomys glareolus) captured in the vicinity of households afflicted with nephropathia epidemica. Am J Trop Med Hyg 56:674–678. https://doi.org/10.4269/ajtmh.1997.56.674
doi: 10.4269/ajtmh.1997.56.674
pubmed: 9230802
Ahmadu B, Lovelace CEA, Samui K (2002) A survey of trypanosomosis in Zambian goats using haematocrit centrifuge technique and polymerase chain reaction. J S Afr Vet Assoc 73:224–226. https://doi.org/10.4102/jsava.v73i4.593
doi: 10.4102/jsava.v73i4.593
pubmed: 12665140
Ahmed HA, MacLeod ET, Hide G, Welburn SC, Picozzi K (2011) The best practice for preparation of samples from FTA®cards for diagnosis of blood borne infections using African trypanosomes as a model system. Parasit Vectors 4:68. https://doi.org/10.1186/1756-3305-4-68
doi: 10.1186/1756-3305-4-68
pubmed: 21548975
pmcid: 3108913
Ahmed T, Uddin MB, Islam MR, Syed Sayeem Uddin A, Basu J, Uddin M (2012) Filter paper sampling of blood for the detection of antibodies to Infectious Bursal Disease virus using a commercial ELISA kit. Vet World 5:341–345. https://doi.org/10.5455/vetworld.2012.341-345
doi: 10.5455/vetworld.2012.341-345
Ahmed HA, Picozzi K, Welburn SC, MacLeod ET (2013) A comparative evaluation of PCR- based methods for species- specific determination of African animal trypanosomes in Ugandan cattle. Parasit Vectors 6:316. https://doi.org/10.1186/1756-3305-6-316
doi: 10.1186/1756-3305-6-316
pubmed: 24499678
pmcid: 4029050
Al-Kappany Y, Abbas I, Devleesschauwer B, Dorny P, Jennes M, Cox E (2018) Seroprevalence of anti-Toxoplasma gondii antibodies in Egyptian sheep and goats. BMC Vet Res 14:120. https://doi.org/10.1186/s12917-018-1440-1
doi: 10.1186/s12917-018-1440-1
pubmed: 29606142
pmcid: 5879817
Aldo Gaggero C, Sutmöller P (1965) The use of serum and blood dried on blotting paper in the detection of foot-and-mouth disease antibody. Br Vet J 121:509–514. https://doi.org/10.1016/s0007-1935(17)40903-1
doi: 10.1016/s0007-1935(17)40903-1
Alexeyev OA, Ahlm C, Elgh F, Aava B, Palo T, Settergren B, Tärnvik A, Wadell G, Juto P (1998) A minority of seropositive wild bank voles (Clethrionomys glareolus) show evidence of current Puumala virus infection. Epidemiol Infect 121:419–425. https://doi.org/10.1017/s0950268898001307
doi: 10.1017/s0950268898001307
pubmed: 9825795
pmcid: 2809541
Andersson A-M, Reineck HB, Nyman A-K (2015) Quantitative detection of antibodies to Aleutian disease virus in dried blood spots as an estimation of hypergammaglobulinemia in mink. Virol Mycol 4:147. https://doi.org/10.4172/2161-0517.1000147
doi: 10.4172/2161-0517.1000147
Andersson A-M, Nyman A-K, Wallgren P (2016) Serodiagnosis of aleutian disease virus infection in mink – short term stability and long term consistency of antibody levels measured by VP2 ELISA. Vet Sci Res Rev 2:23–30. https://doi.org/10.17582/journal.vsrr/2016.2.1.23.30
doi: 10.17582/journal.vsrr/2016.2.1.23.30
Andersson A-M, Nyman A-K, Wallgren P (2017) A retrospective cohort study estimating the individual Aleutian disease progress in female mink using a VP2 ELISA and its association to reproductive performance. Prev Vet Med 140:60–66. https://doi.org/10.1016/j.prevetmed.2017.02.010
doi: 10.1016/j.prevetmed.2017.02.010
pubmed: 28460751
Antunes MV, Charão MF, Linden R (2016) Dried blood spots analysis with mass spectrometry: Potentials and pitfalls in therapeutic drug monitoring. Clin Biochem 49:1035–1046. https://doi.org/10.1016/j.clinbiochem.2016.05.004
doi: 10.1016/j.clinbiochem.2016.05.004
pubmed: 27179588
Armstrong RM, Crowther JR, Denyer M (1991) The detection of antibodies against foot-and-mouth disease virus (FMDV) in filter paper eluates from pig sera or whole blood by ELISA. J Virol Methods 34:181–192. https://doi.org/10.1016/0166-0934(91)90098-K
doi: 10.1016/0166-0934(91)90098-K
pubmed: 1666636
Asawakarn S, Teeranuwat I, Watcharaprapapong N, Siriwatchaiporn N, Somsai P, Kuldee M, Suriyaphol G, Dhitavat S (2018) Comparison of dried blood spot, buccal swab, cloacal swab and feces as DNA sources to identify avian sexes by PCR. Thai J Vet Med 48:325–330
Ashkar T, Ochilo M (1972) The application of the indirect fluorescent antibody test to samples of sera and dried blood from cattle in the Lambwe Valley, South Nyanza, Kenya. Bull World Health Organ 47:769–772
pubmed: 4594592
pmcid: 2480938
Aston EJ, Mayor P, Bowman DD, Mohammed HO, Liotta JL, Kwok O, Dubey JP (2014) Use of filter papers to determine seroprevalence of Toxoplasma gondii among hunted ungulates in remote Peruvian Amazon. Int J Parasitol Parasites Wildl 3:15–19. https://doi.org/10.1016/j.ijppaw.2013.12.001
doi: 10.1016/j.ijppaw.2013.12.001
pubmed: 24918073
Avakian AP, Dick JW (1985) Comparison of filter-paper-eluted whole blood with serum in fowl cholera serology using the enzyme-linked immunosorbent assay. Avian Dis 29:1277–1280. https://doi.org/10.2307/1590486
doi: 10.2307/1590486
pubmed: 3833230
Awad F, Baylis M, Jones RC, Ganapathy K (2014) Evaluation of Flinders Technology Associates cards for storage and molecular detection of avian metapneumoviruses. Avian Pathol 43:125–129. https://doi.org/10.1080/03079457.2014.885114
doi: 10.1080/03079457.2014.885114
pubmed: 24437352
Aysanoa E, Mayor P, Mendoza AP, Zariquiey CM, Morales EA, Pérez JG, Bowler M, Ventocilla JA, González C, Baldeviano GC, Lescano AG (2017) Molecular epidemiology of trypanosomatids and Trypanosoma cruzi in primates from Peru. EcoHealth 14:732–742. https://doi.org/10.1007/s10393-017-1271-8
doi: 10.1007/s10393-017-1271-8
pubmed: 29098492
pmcid: 5818207
Ball C, Forrester A, Ganapathy K (2016) Detection of variant infectious bronchitis viruses in Sri Lanka (2012–2015). Arch Virol 161:1697–1699. https://doi.org/10.1007/s00705-016-2831-x
doi: 10.1007/s00705-016-2831-x
pubmed: 27020570
Banks M (1985) Detection of antibodies to Aujeszky’s disease virus in whole blood by ELISA disc. J Virol Methods 12:41–45. https://doi.org/10.1016/0166-0934(85)90006-0
doi: 10.1016/0166-0934(85)90006-0
pubmed: 3001121
Barst BD, Wooller MJ, O’Brien DM, Santa-Rios A, Basu N, Köck G, Johnson JJ, Muir D (2020) Dried blood spot sampling of landlocked Arctic char (Salvelinus alpinus) for estimating mercury exposure and stable carbon isotope fingerprinting of essential amino acids. Environ Toxicol Chem 39(4):893–903. https://doi.org/10.1002/etc.4686
doi: 10.1002/etc.4686
pubmed: 32045959
pmcid: 7748106
Barst BD, Muir D, O’Brien DM, Wooller MJ (2021) Validation of dried blood spot sampling for determining trophic positions of Arctic char using nitrogen stable isotope analyses of amino acids. Rapid Commun Mass Spectrom 35(2):e8992. https://doi.org/10.1002/rcm.8992
doi: 10.1002/rcm.8992
pubmed: 33125783
pmcid: 7755117
Beard C, Brugh M (1977) Use of the Nobuto blood-sampling paper strip for Newcastle disease serology. Avian Dis 21:630–636. https://doi.org/10.2307/1589422
doi: 10.2307/1589422
pubmed: 606221
Benson TF, Mickle E (1964) A filter paper disc method for collecting canine blood samples for serological procedures. Cornell Vet 54:331–334
pubmed: 14193055
Bevins S, Pappert R, Young J, Schmit B, Kohler D, Baeten L (2016) Effect of storage time and storage conditions on antibody detection in blood samples collected on filter paper. J Wildl Dis 52:478–483. https://doi.org/10.7589/2015-09-242
doi: 10.7589/2015-09-242
pubmed: 27187032
Bhuiyan AR, Chowdhury EH, Kwiatek O, Parvin R, Rahman MM, Islam MR, Albina E, Libeau G (2014) Dried fluid spots for peste des petits ruminants virus load evaluation allowing for non-invasive diagnosis and genotyping. BMC Vet Res 10:247. https://doi.org/10.1186/s12917-014-0247-y
doi: 10.1186/s12917-014-0247-y
pubmed: 25301058
pmcid: 4203889
Birkenheuer AJ, Marr HS, Warren C, Acton AE, Mucker EM, Humphreys JG, Tucker MD (2008) Cytauxzoon felis infections are present in bobcats (Lynx rufus) in a region where cytauxzoonosis is not recognized in domestic cats. Vet Parasitol 153:126–130. https://doi.org/10.1016/j.vetpar.2008.01.020
doi: 10.1016/j.vetpar.2008.01.020
pubmed: 18295403
Birnberg L, Temmam S, Aranda C, Correa-Fiz F, Talavera S, Bigot T, Eloit M, Busquets N (2020) Viromics on honey-baited FTA cards as a new tool for the detection of circulating viruses in mosquitoes. Viruses 12:274. https://doi.org/10.3390/v12030274
doi: 10.3390/v12030274
pmcid: 7150749
Biswal JK, Subramaniam S, Ranjan R, Pattnaik B (2016) Evaluation of FTA(®) card for the rescue of infectious foot-and-mouth disease virus by chemical transfection of extracted RNA in cultured cells. Mol Cell Probes 30:225–230. https://doi.org/10.1016/j.mcp.2016.06.002
doi: 10.1016/j.mcp.2016.06.002
pubmed: 27321701
Boid R, Jones TW, Munro A (1999) A simple procedure for the extraction of trypanosome DNA and host protein from dried blood meal residues of haematophagous diptera. Vet Parasitol 85:313–317. https://doi.org/10.1016/s0304-4017(99)00125-9
doi: 10.1016/s0304-4017(99)00125-9
pubmed: 10488733
Bolais PF, Vignoles P, Pereira PF, Keim R, Aroussi A, Ismail K, Dardé ML, Amendoeira MR, Mercier A (2017) Toxoplasma gondii survey in cats from two environments of the city of Rio de Janeiro, Brazil by Modified Agglutination Test on sera and filter-paper. Parasit Vectors 10:88. https://doi.org/10.1186/s13071-017-2017-8
doi: 10.1186/s13071-017-2017-8
pubmed: 28212681
pmcid: 5316176
Borisenko AV, Lim BK, Ivanova NV, Hanner RH, Hebert PDN (2008) DNA barcoding in surveys of small mammal communities: a field study in Suriname. Mol Ecol Resour 8:471–479. https://doi.org/10.1111/j.1471-8286.2007.01998.x
doi: 10.1111/j.1471-8286.2007.01998.x
pubmed: 21585824
Boué F, El Berbri I, Hormaz V, Boucher J-M, El Mamy AB, Traore A, Fihri OF, Petavy A-F, Dakkak A, Umhang G (2017) Use of FTA(®) card methodology for sampling and molecular characterization of Echinococcus granulosus sensu lato in Africa. Exp Parasitol 173:29–33. https://doi.org/10.1016/j.exppara.2016.12.016
doi: 10.1016/j.exppara.2016.12.016
pubmed: 28017635
Braga MD, Coêlho IC, Pompeu MM, Evans TG, MacAullife IT, Teixeira MJ, Lima JW (1998) Control of canine visceral leishmaniasis: comparison of results from a rapid elimination program of serum-reactive dogs using an immunoenzyme assay and slower elimination of serum-reactive dogs using filter paper elution indirect immunofluorescence (article in Portuguese). Rev Soc Bras Med Trop 31:419–424. https://doi.org/10.1590/s0037-86821998000500001
doi: 10.1590/s0037-86821998000500001
pubmed: 9789439
Braz LMA, Raiz-Júnior R, Alárcon RS, Gakiya E, Amato-Neto V, Okay TS (2008) Suitability of a rapid DNA isolation and amplification for detection of Trypanosoma cruzi in Triatoma infestans dry fecal spots collected on filter paper. Parasite 15:595–598. https://doi.org/10.1051/parasite/2008154595
doi: 10.1051/parasite/2008154595
pubmed: 19202767
Brito CMM, Lima MM, Sarquis O, Pires MQ, Coutinho CFS, Duarte R, Pacheco RS (2008) Genetic polymorphism in Trypanosoma cruzi I isolated from Brazilian Northeast triatomines revealed by low-stringency single specific primer-polymerase chain reaction. Parasitol Res 103:1111–1117. https://doi.org/10.1007/s00436-008-1102-5
doi: 10.1007/s00436-008-1102-5
pubmed: 18633644
Brugh M, Beard CW (1980) Collection and processing of blood samples dried on paper for microassay of Newcastle disease virus and avian influenza virus antibodies. Am J Vet Res 41:1495–1498
pubmed: 7447141
Bujang NS, Harrison NA, Su N-Y (2011) An improved method for extraction and purification of termite endo-β-1,4-glucanase from FTA® cards. Florida Entomol 94:356–358. https://doi.org/10.1653/024.094.0236
doi: 10.1653/024.094.0236
Burkett-Cadena ND, Gibson J, Lauth M, Stenn T, Acevedo C, Xue R, McNelly J, Northey E, Hassan HK, Fulcher A, Bingham AM, van Olphen J, van Olphen A, Unnasch TR (2016) Evaluation of the honey-card technique for detection of transmission of arboviruses in Florida and comparison with sentinel chicken seroconversion. J Med Entomol 53:1449–1457. https://doi.org/10.1093/jme/tjw106
doi: 10.1093/jme/tjw106
pubmed: 27330092
Burridge MJ, Kimber CD, McHardy N (1973) Detection of antibodies to Babesia bigemina in dried blood samples using the indirect fluorescent antibody test. Ann Trop Med Parasitol 67:191–195. https://doi.org/10.1080/00034983.1973.11686876
doi: 10.1080/00034983.1973.11686876
pubmed: 4578938
Cabrera GP, Da Silva VO, Da Costa RT, Reis AB, Mayrink W, Genaro O, Palatnik-de-Sousa CB (1999) The fucose-mannose ligand-ELISA in the diagnosis and prognosis of canine visceral leishmaniasis in Brazil. Am J Trop Med Hyg 61:296–301. https://doi.org/10.4269/ajtmh.1999.61.296
doi: 10.4269/ajtmh.1999.61.296
pubmed: 10463683
Cardona-Ospina JA, Villalba-Miranda MF, Palechor-Ocampo LA, Mancilla LI, Sepúlveda-Arias JC (2019) A systematic review of FTA cards® as a tool for viral RNA preservation in fieldwork: Are they safe and effective? Prev Vet Med 172:104772. https://doi.org/10.1016/j.prevetmed.2019.104772
doi: 10.1016/j.prevetmed.2019.104772
pubmed: 31607414
pmcid: 7126379
Carr N, Appleyard S (2008) Using FTA® Elute MicroCards to address biosecurity and DNA quality issues in abalone aquaculture. Aquac Res 39:1799–1802. https://doi.org/10.1111/j.1365-2109.2008.02055.x
doi: 10.1111/j.1365-2109.2008.02055.x
Chadio S, Xylouri E, Kalogiannis D, Michalopoulou E, Evagelatos S, Menegatos I (2002) Early pregnancy diagnosis in swine by direct radioimmunoassay for progesterone in blood spotted on filter paper. Anim Reprod Sci 69:65–72. https://doi.org/10.1016/S0378-4320(01)00145-2
doi: 10.1016/S0378-4320(01)00145-2
pubmed: 11755718
Chandler JC, Baeten LA, Griffin DL, Gidlewski T, DeLiberto TJ, Petersen JM, Pappert R, Young JW, Bevins SN (2018) A bead-based flow cytometric assay for monitoring Yersinia pestis exposure in wildlife. J Clin Microbiol 56:e00273-e318. https://doi.org/10.1128/JCM.00273-18
doi: 10.1128/JCM.00273-18
pubmed: 29695520
pmcid: 6018325
Chang C, Yamamoto K, Chomel BB, Kasten RW, Simpson DC, Smith CR, Kramer VL (1999) Seroepidemiology of Bartonella vinsonii subsp. berkhoffii infection in California coyotes, 1994–1998. Emerg Infect Dis 5:711–715. https://doi.org/10.3201/eid0505.990514
doi: 10.3201/eid0505.990514
pubmed: 10511529
pmcid: 2627713
Chomel BB, Kikuchi Y, Martenson JS, Roelke-Parker ME, Chang C-C, Kasten RW, Foley JE, Laudre J, Murphy K, Swift PK, Kramer VL, O’brien SJ (2004) Seroprevalence of Bartonella infection in American free-ranging and captive pumas (Felis concolor) and bobcats (Lynx rufus). Vet Res 35:233–241. https://doi.org/10.1051/vetres:2004001
doi: 10.1051/vetres:2004001
pubmed: 15099499
Cortes S, Rolão N, Ramada J, Campino L (2004) PCR as a rapid and sensitive tool in the diagnosis of human and canine leishmaniasis using Leishmania donovani s.l.-specific kinetoplastid primers. Trans R Soc Trop Med Hyg 98:12–17. https://doi.org/10.1016/s0035-9203(03)00002-6
doi: 10.1016/s0035-9203(03)00002-6
pubmed: 14702834
Cortes AL, Montiel ER, Gimeno IM (2009) Validation of Marek’s disease diagnosis and monitoring of Marek’s disease vaccines from samples collected in FTA cards. Avian Dis 53:510–516. https://doi.org/10.1637/8871-041009-Reg.1
doi: 10.1637/8871-041009-Reg.1
pubmed: 20095150
Cox A, Tilley A, McOdimba F, Fyfe J, Eisler M, Hide G, Welburn S (2005) A PCR based assay for detection and differentiation of African trypanosome species in blood. Exp Parasitol 111:24–29. https://doi.org/10.1016/j.exppara.2005.03.014
doi: 10.1016/j.exppara.2005.03.014
pubmed: 16054487
Cox A, Tosas O, Tilley A, Picozzi K, Coleman P, Hide G, Welburn S (2010) Constraints to estimating the prevalence of trypanosome infections in East African zebu cattle. Parasit Vectors 3:82. https://doi.org/10.1186/1756-3305-3-82
doi: 10.1186/1756-3305-3-82
pubmed: 20815940
pmcid: 2944308
Curry PS, Elkin BT, Campbell M, Nielsen K, Hutchins W, Ribble C, Kutz SJ (2011) Filter-paper blood samples for ELISA detection of brucella antibodies in caribou. J Wildl Dis 47:12–20. https://doi.org/10.7589/0090-3558-47.1.12
doi: 10.7589/0090-3558-47.1.12
pubmed: 21269992
Curry PS, Ribble C, Sears WC, Hutchins W, Orsel K, Godson D, Lindsay R, Dibernardo A, Kutz SJ (2014a) Blood collected on filter paper for wildlife serology: detecting antibodies to Neospora Caninum, West Nile virus, and five bovine viruses in reindeer. J Wildl Dis 50:297–307. https://doi.org/10.7589/2012-02-047
doi: 10.7589/2012-02-047
pubmed: 24484497
Curry PS, Ribble C, Sears WC, Orsel K, Hutchins W, Godson D, Lindsay R, Dibernardo A, Campbell M, Kutz SJ (2014b) Blood collected on filter paper for wildlife serology: evaluating storage and temperature challenges of field collections. J Wildl Dis 50:308–321. https://doi.org/10.7589/2012-06-150
doi: 10.7589/2012-06-150
pubmed: 24499329
da Silva VO, Borja-Cabrera GP, Correia Pontes NN, de Souza EP, Luz KG, Palatnik M, Palatnik de Sousa CB (2000) A phase III trial of efficacy of the FML-vaccine against canine kala-azar in an endemic area of Brazil (São Gonçalo do Amaranto, RN). Vaccine 19:1082–1092. https://doi.org/10.1016/s0264-410x(00)00339-x
doi: 10.1016/s0264-410x(00)00339-x
pubmed: 11137242
Dalerum F, Shults B, Kunkel K (2005) A serologic survey for antibodies to three canine viruses in wolverines (Gulo gulo) from the Brooks Range, Alaska. J Wildl Dis 41:792–795. https://doi.org/10.7589/0090-3558-41.4.792
doi: 10.7589/0090-3558-41.4.792
pubmed: 16456170
Dam-Tuxen R, Dahl J, Jensen TH, Dam-Tuxen T, Struve T, Bruun L (2014) Diagnosing Aleutian mink disease infection by a new fully automated ELISA or by counter current immunoelectrophoresis: a comparison of sensitivity and specificity. J Virol Methods 199:53–60. https://doi.org/10.1016/j.jviromet.2014.01.011
doi: 10.1016/j.jviromet.2014.01.011
pubmed: 24462658
Dass K, Koutsos E, Minter LJ, Ange-van Heugten K (2020) Analysis of fatty acid profiles for eastern box (Terrapene carolina carolina) and common snapping (Chelydra serpentine) turtles in wild and managed care environments. J Zoo Wildl Med 51:478–484. https://doi.org/10.1638/2019-0146
doi: 10.1638/2019-0146
pubmed: 33480522
Dass K, Lewbart GA, Muñoz-Pérez JP, Yépez MI, Loyola A, Chen E, Páez-Rosas D (2021) Whole blood fatty acid concentrations in the San Cristóbal Galápagos tortoise (Chelonoidis chathamensis). PeerJ 9:e11582. https://doi.org/10.7717/peerj.11582
doi: 10.7717/peerj.11582
pubmed: 34249492
pmcid: 8254470
Dávila AMR, Herrera HM, Schlebinger T, Souza SS, Traub-Cseko YM (2003) Using PCR for unraveling the cryptic epizootiology of livestock trypanosomosis in the Pantanal, Brazil. Vet Parasitol 117:1–13. https://doi.org/10.1016/j.vetpar.2003.08.002
doi: 10.1016/j.vetpar.2003.08.002
pubmed: 14597273
de Almeida P, Ndao M, Meirvenne N, Geerts S (1997) Diagnostic evaluation of PCR in goats experimentally infected with. Acta Trop 66:45–50. https://doi.org/10.1016/S0001-706X(97)00677-3
doi: 10.1016/S0001-706X(97)00677-3
pubmed: 9177095
de Almeida P, Ndao M, Goossens B, Osaer S (1998a) PCR primer evaluation for the detection of trypanosome DNA in naturally infected goats. Vet Parasitol 80:111–116. https://doi.org/10.1016/s0304-4017(98)00205-2
doi: 10.1016/s0304-4017(98)00205-2
de Almeida P, Ndao M, Van Meirvenne N, Geerts S (1998b) Diagnostic evaluation of PCR on dried blood samples from goats experimentally infected with Trypanosoma brucei brucei. Acta Trop 70:269–276. https://doi.org/10.1016/s0001-706x(98)00031-x
doi: 10.1016/s0001-706x(98)00031-x
pubmed: 9777713
de Clare Bronsvoort BM, von Wissmann B, Fèvre EM, Handel IG, Picozzi K, Welburn SC (2010) No gold standard estimation of the sensitivity and specificity of two molecular diagnostic protocols for Trypanosoma brucei spp. in Western Kenya. PLoS One 5:e8628. https://doi.org/10.1371/journal.pone.0008628
doi: 10.1371/journal.pone.0008628
pubmed: 20062795
de Oliveira A, David C, Esteves PA, Spilki F, Silva A, Holz C, Simonetti A, Roehe P (2011) Blood or serum collected on filter paper for detection of antibodies to bovine herpesvirus Type 1 (BoHV-1). Acta Sci Vet 39:948
De Kesel PM, Sadones N, Capiau S, Lambert WE, Stove CP (2013) Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis 5(16):2023–2041. https://doi.org/10.4155/bio.13.156
doi: 10.4155/bio.13.156
pubmed: 23937137
Demirev PA (2013) Dried blood spots: analysis and applications. Anal Chem 85:779–789. https://doi.org/10.1021/ac303205m
doi: 10.1021/ac303205m
pubmed: 23171435
Desloire S, Moro C, Chauve C, Zenner L (2006) Comparison of four methods of extracting DNA from D. gallinae (Acari: Dermanyssidae). Vet Res 37:725–732. https://doi.org/10.1051/vetres:2006031
doi: 10.1051/vetres:2006031
pubmed: 16820136
Dickey AM, Shatters RG, McKenzie CL (2012) A comparison of two methods of eluting insect DNA from flinders technology associates cards. Florida Entomol 95:790–793. https://doi.org/10.1653/024.095.0336
doi: 10.1653/024.095.0336
Dorn PL, Flores J, Brahney B, Gutierrez A, Rosales R, Rodas A, Monroy C (2001) Comparison of polymerase chain reaction on fresh tissue samples and fecal drops on filter paper for detection of Trypanosoma cruzi in Rhodnius prolixus. Mem Inst Oswaldo Cruz 96:503–505. https://doi.org/10.1590/s0074-02762001000400010
doi: 10.1590/s0074-02762001000400010
pubmed: 11391422
Drake GJ, Shea RL, Fidgett A, Lopez J, Christley RM (2017) Provision of ultraviolet basking lights to indoor housed tropical birds and their effect on suspected vitamin D3 deficiency. J Zoo Aquarium Res 5:151–157. https://doi.org/10.19227/jzar.v5i4.283
doi: 10.19227/jzar.v5i4.283
Dubay SA, Rosenstock SS, Stallknecht DE, DeVos JC (2006) Determining prevalence of bluetongue and epizootic hemorrhagic disease viruses in mule deer in Arizona (USA) using whole blood dried on paper strips compared to serum analyses. J Wildl Dis 42:159–163. https://doi.org/10.7589/0090-3558-42.1.159
doi: 10.7589/0090-3558-42.1.159
pubmed: 16699159
Durel L, Benoit F, Treilles M, Farre M (2015) Extraction of mastitis pathogen DNA from sample collecting cards: practical consequences. J Vet Sci Anim Husb 3:202. https://doi.org/10.15744/2348-9790.1.602
doi: 10.15744/2348-9790.1.602
Duscher G, Peschke R, Wille-Piazzai W, Joachim A (2009) Parasites on paper–The use of FTA Elute((R)) for the detection of Dirofilaria repens microfilariae in canine blood. Vet Parasitol 161:349–351. https://doi.org/10.1016/j.vetpar.2009.01.007
doi: 10.1016/j.vetpar.2009.01.007
pubmed: 19211188
Dusek RJ, Hall JS, Nashold SW, TeSlaa JL, Ip HS (2011) Evaluation of Nobuto filter paper strips for the detection of avian influenza virus antibody in waterfowl. Avian Dis 55:674–676. https://doi.org/10.1637/9687-021511-ResNote.1
doi: 10.1637/9687-021511-ResNote.1
pubmed: 22312989
Dutra L, Souza F, Jackson I, Araújo M, Vasconcellos A, Young R (2020) Validating the use of oral swabs for telomere length assessment in dogs. J Vet Behav Clin Appl Res 40:16–20. https://doi.org/10.1016/j.jveb.2020.07.011
doi: 10.1016/j.jveb.2020.07.011
El Daous H, Mitoma S, Elhanafy E, Thi Nguyen H, Thi Mai N, Hara A, Duangtathip K, Takezaki Y, Kaneko C, Norimine J, Sekiguchi S (2020) Establishment of a novel diagnostic test for Bovine leukaemia virus infection using direct filter PCR. Transbound Emerg Dis 67:1671–1676. https://doi.org/10.1111/tbed.13506
doi: 10.1111/tbed.13506
pubmed: 32034996
Elmore SA, Huyvaert KP, Bailey LL, Milhous J, Alisauskas RT, Gajadhar AA, Jenkins EJ (2014) Toxoplasma gondii exposure in arctic-nesting geese: A multi-state occupancy framework and comparison of serological assays. Int J Parasitol Parasites Wildl 3:147–153. https://doi.org/10.1016/j.ijppaw.2014.05.005
doi: 10.1016/j.ijppaw.2014.05.005
pubmed: 25161913
pmcid: 4142267
Enderle Y, Foerster K, Burhenne J (2016) Clinical feasibility of dried blood spots: Analytics, validation, and applications. J Pharm Biomed Anal 130:231–243. https://doi.org/10.1016/j.jpba.2016.06.026
doi: 10.1016/j.jpba.2016.06.026
pubmed: 27390013
Evans TG, Vasconcelos IA, Lima JW, Teixeira JM, McAullife IT, Lopes UG, Pearson RD, Vasconcelos AW (1990) Canine visceral leishmaniasis in northeast Brazil: assessment of serodiagnostic methods. Am J Trop Med Hyg 42:118–123. https://doi.org/10.4269/ajtmh.1990.42.118
doi: 10.4269/ajtmh.1990.42.118
pubmed: 2156463
Fall AG, Diaïté A, Etter E, Bouyer J, Ndiaye TD, Konaté L (2012) The mosquito Aedes (Aedimorphus) vexans arabiensis as a probable vector bridging the West Nile virus between birds and horses in Barkedji (Ferlo, Senegal). Med Vet Entomol 26:106–111. https://doi.org/10.1111/j.1365-2915.2011.00974.x
doi: 10.1111/j.1365-2915.2011.00974.x
pubmed: 21790686
Figueiredo FB, Madeira MF, Menezes RC, Pacheco RS, Pires MQ, Furtado MC, Pinto AG, Schubach TMP (2010a) Efficacy of an indirect immunofluorescence test in the diagnosis of canine leishmaniosis. Vet J 186:123–124. https://doi.org/10.1016/j.tvjl.2009.06.030
doi: 10.1016/j.tvjl.2009.06.030
pubmed: 19665398
Figueiredo FB, Madeira MF, Nascimento LD, Abrantes TR, Mouta-Confort E, Passos SRL, Schubach TMP (2010b) Canine visceral leishmaniasis: study of methods for the detection of IgG in serum and eluate samples. Rev Inst Med Trop Sao Paulo 52:193–196. https://doi.org/10.1590/s0036-46652010000400005
doi: 10.1590/s0036-46652010000400005
pubmed: 21748226
Flies EJ, Toi C, Weinstein P, Doggett SL, Williams CR (2015) Converting mosquito surveillance to arbovirus surveillance with honey-baited nucleic acid preservation cards. Vector Borne Zoonotic Dis 15:397–403. https://doi.org/10.1089/vbz.2014.1759
doi: 10.1089/vbz.2014.1759
pubmed: 26186511
Forzán MJ, Wood J (2013) Low detection of ranavirus DNA in wild postmetamorphic green frogs, Rana (Lithobates) clamitans, despite previous or concurrent tadpole mortality. J Wildl Dis 49:879–886. https://doi.org/10.7589/2013-03-051
doi: 10.7589/2013-03-051
pubmed: 24502715
Foss L, Reisen WK, Fang Y, Kramer V, Padgett K (2016) Evaluation of nucleic acid preservation cards for West nile virus testing in dead birds. PLoS ONE 11:e0157555. https://doi.org/10.1371/journal.pone.0157555
doi: 10.1371/journal.pone.0157555
pubmed: 27341492
pmcid: 4920385
Fowler KE, Reitter CP, Walling GA, Griffin DK (2012) Novel approach for deriving genome wide SNP analysis data from archived blood spots. BMC Res Notes 5:503. https://doi.org/10.1186/1756-0500-5-503
doi: 10.1186/1756-0500-5-503
pubmed: 22974252
pmcid: 3497585
Freeman JD, Rosman LM, Ratcliff JD, Strickland PT, Graham DR, Silbergeld EK (2018) State of the Science in Dried Blood Spots. Clin Chem 64(4):656–679. https://doi.org/10.1373/clinchem.2017.275966
doi: 10.1373/clinchem.2017.275966
pubmed: 29187355
Ganapathy K, Ball C, Forrester A (2015) Genotypes of infectious bronchitis viruses circulating in the Middle East between 2009 and 2014. Virus Res 210:198–204. https://doi.org/10.1016/j.virusres.2015.07.019
doi: 10.1016/j.virusres.2015.07.019
pubmed: 26226233
Geysen D, Delespaux V, Geerts S (2003) PCR-RFLP using Ssu-rDNA amplification as an easy method for species-specific diagnosis of Trypanosoma species in cattle. Vet Parasitol 110:171–180. https://doi.org/10.1016/s0304-4017(02)00313-8
doi: 10.1016/s0304-4017(02)00313-8
pubmed: 12482646
Gillingwater K, Mamabolo MV, Majiwa PAO (2010) Prevalence of mixed Trypanosoma congolense infections in livestock and tsetse in KwaZulu-Natal, South Africa. J S Afr Vet Assoc 81:219–223. https://doi.org/10.4102/jsava.v81i4.151
doi: 10.4102/jsava.v81i4.151
pubmed: 21526736
Gimeno IM, Dunn JR, Cortes AL, El-Gohary AE-G, Silva RF (2014) Detection and differentiation of CVI988 (Rispens vaccine) from other serotype 1 Marek’s disease viruses. Avian Dis 58:232–243. https://doi.org/10.1637/10666-091713-Reg.1
doi: 10.1637/10666-091713-Reg.1
pubmed: 25055627
Goharriz H, Marston DA, Sharifzoda F, Ellis RJ, Horton DL, Khakimov T, Whatmore A, Khamroev K, Makhmadshoev AN, Bazarov M, Fooks AR, Banyard AC (2017) First complete genomic sequence of a rabies virus from the republic of Tajikistan obtained directly from a flinders technology associates card. Genome Announc 5:e00515-e517. https://doi.org/10.1128/genomeA.00515-17
doi: 10.1128/genomeA.00515-17
pubmed: 28684566
pmcid: 5502847
Gonzales JL, Jones TW, Picozzi K, Cuellar HR (2003) Evaluation of a polymerase chain reaction assay for the diagnosis of bovine trypanosomiasis and epidemiological surveillance in Bolivia. Kinetoplastid Biol Dis 2:8. https://doi.org/10.1186/1475-9292-2-8
doi: 10.1186/1475-9292-2-8
pubmed: 14613492
pmcid: 280665
Gonzales JL, Loza A, Chacon E (2006) Sensitivity of different Trypanosoma vivax specific primers for the diagnosis of livestock trypanosomosis using different DNA extraction methods. Vet Parasitol 136:119–126. https://doi.org/10.1016/j.vetpar.2005.10.024
doi: 10.1016/j.vetpar.2005.10.024
pubmed: 16359805
Gonzales JL, Chacon E, Miranda M, Loza A, Siles LM (2007) Bovine trypanosomosis in the Bolivian Pantanal. Vet Parasitol 146:9–16. https://doi.org/10.1016/j.vetpar.2007.02.010
doi: 10.1016/j.vetpar.2007.02.010
pubmed: 17374452
Griffin EK, Aristizabal-Henao JJ, Bowden JA (2021) Evaluation of different extraction methods for the analysis of per- and polyfluoroalkyl substances in dried blood spots from the Florida manatee (Trichechus manatus). Environ Toxicol Chem 40(10):2726–2732. https://doi.org/10.1002/etc.5175
doi: 10.1002/etc.5175
pubmed: 34293220
Guerrini M, Gennai C, Panayides P, Crabtree A, Zuberogoitia I, Copland AS, Babushkina O, Politi PM, Giunchi D, Barbanera F (2014) Large-scale patterns of genetic variation in a female-biased dispersing passerine: the importance of sex-based analyses. PLoS ONE 9:e98574. https://doi.org/10.1371/journal.pone.0098574
doi: 10.1371/journal.pone.0098574
pubmed: 24886720
pmcid: 4041750
Gulas-Wroblewski BE, Kairis RB, Gorchakov R, Wheless A, Murray KO (2021) Optimization of DNA extraction from field-collected mammalian whole blood on filter paper for Trypanosoma cruzi (Chagas disease) detection. Pathog 10:1040. https://doi.org/10.3390/pathogens10081040
doi: 10.3390/pathogens10081040
Gutiérrez-Corchero F, Arruga V, Sanz L, García García C, Hernandez M, Campos F (2002) Using FTAR cards to store avian blood samples for genetic studies. Their application in sex determination. Mol Ecol Notes 2:75–77. https://doi.org/10.1046/j.1471-8278.2001.00110.x
doi: 10.1046/j.1471-8278.2001.00110.x
Hall-Mendelin S, Ritchie SA, Johansen CA, Zborowski P, Cortis G, Dandridge S, Hall RA, van den Hurk AF (2010) Exploiting mosquito sugar feeding to detect mosquito-borne pathogens. Proc Natl Acad Sci U S A 107:11255–11259. https://doi.org/10.1073/pnas.1002040107
doi: 10.1073/pnas.1002040107
pubmed: 20534559
pmcid: 2895145
Hamblin C, Hedger RS (1982) Blood dried on filter or blotting paper for the detection of antibody against swine vesicular disease virus by enzyme-linked immunosorbent assay. Vet Rec 111:460–461. https://doi.org/10.1136/vr.111.20.460-a
doi: 10.1136/vr.111.20.460-a
pubmed: 6294958
Hansen CM, Hueffer K, Gulland F, Wells RS, Balmer BC, Castellini JM, O’Hara T (2014) Use of cellulose filter paper to quantify whole-blood mercury in two marine mammals: validation study. J Wildl Dis 50:271–278. https://doi.org/10.7589/2013-08-214
doi: 10.7589/2013-08-214
pubmed: 24484499
Harvey ML (2005) An alternative for the extraction and storage of DNA from insects in forensic entomology. J Forensic Sci 50:627–629. https://doi.org/10.1520/JFS2004404
doi: 10.1520/JFS2004404
pubmed: 15932097
Hattermann K, Soike D, Grund C, Mankertz A (2002) A method to diagnose Pigeon circovirus infection in vivo. J Virol Methods 104:55–58. https://doi.org/10.1016/s0166-0934(02)00038-1
doi: 10.1016/s0166-0934(02)00038-1
pubmed: 12020792
Heim BC, Ivy JA, Latch EK (2012) A suite of microsatellite markers optimized for amplification of DNA from Addax (Addax nasomaculatus) blood preserved on FTA cards. Zoo Biol 31:98–106. https://doi.org/10.1002/zoo.20420
doi: 10.1002/zoo.20420
pubmed: 21898577
Herrera HM, Norek A, Freitas TPT, Rademaker V, Fernandes O, Jansen AM (2005) Domestic and wild mammals infection by Trypanosoma evansi in a pristine area of the Brazilian Pantanal region. Parasitol Res 96:121–126. https://doi.org/10.1007/s00436-005-1334-6
doi: 10.1007/s00436-005-1334-6
pubmed: 15824901
Higgins JA, Hubalek Z, Halouzka J, Elkins KL, Sjostedt A, Shipley M, Ibrahim MS (2000) Detection of Francisella tularensis in infected mammals and vectors using a probe-based polymerase chain reaction. Am J Trop Med Hyg 62:310–318. https://doi.org/10.4269/ajtmh.2000.62.310
doi: 10.4269/ajtmh.2000.62.310
pubmed: 10813490
Higgins JL, Scanlon LM, Makowski AJ, Childs-Sanford SE (2020) Evaluation of 25-hydroxyvitamin D in Hoffmann’s two-toed sloths (Choloepus hoffmanni) using dried blood spots analyzed by liquid chromatography-tandem mass spectrometry. J Zoo Wildl Med 50(4):751–757. https://doi.org/10.1638/2019-0045
doi: 10.1638/2019-0045
pubmed: 31926504
Holland WG, Thanh NG, My LN, Magnus E, Verloo D, Büscher P, Goddeeris B, Vercruysse J (2002) Evaluation of whole fresh blood and dried blood on filter paper discs in serological tests for Trypanosoma evansi in experimentally infected water buffaloes. Acta Trop 81:159–165. https://doi.org/10.1016/S0001-706X(01)00211-X
doi: 10.1016/S0001-706X(01)00211-X
pubmed: 11801223
Hopkins JS, Chitambo H, Machila N, Luckins AG, Rae PF, Van Den Bossche P, Eisler MC (1998) Adaptation and validation of antibody-ELISA using dried blood spots on filter paper for epidemiological surveys of tsetse-transmitted trypanosomosis in cattle. Prev Vet Med 37:91–99. https://doi.org/10.1016/S0167-5877(98)00101-9
doi: 10.1016/S0167-5877(98)00101-9
pubmed: 9879583
Hutet E, Chevallier S, Eloit M, Touratier A, Blanquefort P, Albina E (2003) Porcine reproductive and respiratory syndrome antibody detection on filter discs. Rev Sci Tech 22:1077–1085. https://doi.org/10.20506/rst.22.3.1461
doi: 10.20506/rst.22.3.1461
pubmed: 15005564
Inoue R, Tsukahara T, Sunaba C, Itoh M, Ushida K (2007) Simple and rapid detection of the porcine reproductive and respiratory syndrome virus from pig whole blood using filter paper. J Virol Methods 141:102–106. https://doi.org/10.1016/j.jviromet.2006.11.030
doi: 10.1016/j.jviromet.2006.11.030
pubmed: 17188757
Ippen R, Kozojed V, Jíra J (1981) Toxoplasmosis in zoo animals. Folia Parasitol (Praha) 28:109–115
Jacques ALB, Santos MK, Gorziza RP, Limberger RP (2022) Dried matrix spots: an evolving trend in the toxicological field. Forensic Sci Med Pathol 18(1):86–102. https://doi.org/10.1007/s12024-021-00434-5
doi: 10.1007/s12024-021-00434-5
pubmed: 35171452
Jaffe JE, Ferguson A, Michaels CJ (2019) The utility of dried blood spots for the assessment of avian vitamin D3 status compared with plasma analysis. J Zoo Aquarium Res 7:138–143. https://doi.org/10.19227/jzar.v7i3.383
doi: 10.19227/jzar.v7i3.383
Jara RF, Sepúlveda C, Ip HS, Samuel MD (2015) Total protein concentration and diagnostic test results for gray wolf (Canis lupus) serum using Nobuto filter paper strips. J Wildl Dis 51:475–478. https://doi.org/10.7589/2013-07-185
doi: 10.7589/2013-07-185
pubmed: 25574804
Jefferies R, Ryan UM, Irwin PJ (2007) PCR-RFLP for the detection and differentiation of the canine piroplasm species and its use with filter paper-based technologies. Vet Parasitol 144:20–27. https://doi.org/10.1016/j.vetpar.2006.09.022
doi: 10.1016/j.vetpar.2006.09.022
pubmed: 17127005
Jennings-Gaines JE, Edwards WH, Robinson TJ (2021) Determining antibody retention in hemolyzed, bacterially contaminated, and Nobuto filter paper-derived serum utilizing two Brucella abortus fluorescence polarization assays. J Wildl Dis 57:386–392. https://doi.org/10.7589/JWD-D-20-00021
doi: 10.7589/JWD-D-20-00021
pubmed: 33822148
Johansson P, Olsson GE, Low H-T, Bucht G, Ahlm C, Juto P, Elgh F (2008) Puumala hantavirus genetic variability in an endemic region (Northern Sweden). Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 8:286–296. https://doi.org/10.1016/j.meegid.2008.01.003
doi: 10.1016/j.meegid.2008.01.003
Johnson BJ, Kerlin T, Hall-Mendelin S, van den Hurk AF, Cortis G, Doggett SL, Toi C, Fall K, McMahon JL, Townsend M, Ritchie SA (2015) Development and field evaluation of the sentinel mosquito arbovirus capture kit (SMACK). Parasit Vectors 8:509. https://doi.org/10.1186/s13071-015-1114-9
doi: 10.1186/s13071-015-1114-9
pubmed: 26444264
pmcid: 4595114
Jordan CN, Kaur T, Koenen K, DeStefano S, Zajac AM, Lindsay DS (2005) Prevalence of agglutinating antibodies to Toxoplasma gondii and Sarcocystis neurona in beavers (Castor canadensis) from Massachusetts. J Parasitol 91:1228–1229. https://doi.org/10.1645/GE-543R.1
doi: 10.1645/GE-543R.1
pubmed: 16419776
Jóźwiak M, Wyrostek K, Domańska-Blicharz K, Olszewska-Tomczyk M, Śmietanka K, Minta Z (2016) Application of FTA® Cards for detection and storage of avian influenza virus. J Vet Res 60:1–6. https://doi.org/10.1515/jvetres-2016-0001
doi: 10.1515/jvetres-2016-0001
Kalayou S, Tadelle H, Bsrat A, Abebe N, Haileselassie M, Schallig HDFH (2011) Serological evidence of Leishmania donovani infection in apparently healthy dogs using direct agglutination test (DAT) and rk39 dipstick tests in Kafta Humera, north-west Ethiopia. Transbound Emerg Dis 58:255–262. https://doi.org/10.1111/j.1865-1682.2011.01209.x
doi: 10.1111/j.1865-1682.2011.01209.x
pubmed: 21371289
Kamps AJ, Dubay SA, Langenberg J, Maes RK (2015) Evaluation of trapper-collected Nobuto filter-paper blood samples for distemper and parvovirus antibody detection in coyotes (Canis latrans) and raccoons (Procyon lotor). J Wildl Dis 51:724–728. https://doi.org/10.7589/2014-06-147
doi: 10.7589/2014-06-147
pubmed: 25973631
Karimuribo ED, Morrison LJ, Black A, Turner CMR, Kambarage DM, Ballingall KT (2011) Analysis of host genetic factors influencing African trypanosome species infection in a cohort of Tanzanian Bos indicus cattle. Vet Parasitol 179:35–42. https://doi.org/10.1016/j.vetpar.2011.02.001
doi: 10.1016/j.vetpar.2011.02.001
pubmed: 21377802
Karstad L, Spalatin J, Hanson RP (1957) Application of the paper disc technique to the collection of whole blood and serum samples in studies on eastern equine encephalomyelitis. J Infect Dis 101:295–299. https://doi.org/10.1093/infdis/101.3.295
doi: 10.1093/infdis/101.3.295
pubmed: 13491884
Kashiwagi T, Maxwell EA, Marshall AD, Christensen AB (2015) Evaluating manta ray mucus as an alternative DNA source for population genetics study: underwater-sampling, dry-storage and PCR success. PeerJ 3:e1188. https://doi.org/10.7717/peerj.1188
doi: 10.7717/peerj.1188
pubmed: 26413431
pmcid: 4581770
Katakura N, Takakura A, Kagiyama N (1992) Application of dried whole blood collected on filter paper disks to ELISA for the detection of Sendai virus and mouse hepatitis virus antibodies in mice. Jikken Dobutsu 41:389–390. https://doi.org/10.1538/expanim1978.41.3_389
doi: 10.1538/expanim1978.41.3_389
pubmed: 1324183
Katakura K, Lubinga C, Chitambo H, Tada Y (1997) Detection of Trypanosoma congolense and T. brucei subspecies in cattle in Zambia by polymerase chain reaction from blood collected on a filter paper. Parasitol Res 83:241–245. https://doi.org/10.1007/s004360050240
doi: 10.1007/s004360050240
pubmed: 9089719
Keeler SP, Ferro PJ, Brown JD, Fang X, El-Attrache J, Poulson R, Jackwood MW, Stallknecht DE (2012) Use of FTA sampling cards for molecular detection of avian influenza virus in wild birds. Avian Dis 56:200–207. https://doi.org/10.1637/9862-072611-Reg.1
doi: 10.1637/9862-072611-Reg.1
pubmed: 22545547
Kennedy LJ, Brown JJ, Barnes A, Ollier WER, Knyazev S (2008) Major histocompatibility complex typing of dogs from Russia shows further dog leukocyte antigen diversity. Tissue Antigens 71:151–156. https://doi.org/10.1111/j.1399-0039.2007.00965.x
doi: 10.1111/j.1399-0039.2007.00965.x
pubmed: 18005093
Kiatpathomchai W, Jitrapakdee S, Panyim S, Boonsaeng V (2004) RT-PCR detection of yellow head virus (YHV) infection in Penaeus monodon using dried haemolymph spots. J Virol Methods 119:1–5. https://doi.org/10.1016/j.jviromet.2004.02.008
doi: 10.1016/j.jviromet.2004.02.008
pubmed: 15109813
Kimber CD, Burridge MJ (1972) The indirect fluorescent antibody test for experimental east coast fever (Theileria parva infection of cattle). Evaluation of dried blood samples as a source of antibody. Res Vet Sci 13:133–135. https://doi.org/10.1016/s0034-5288(18)34058-x
doi: 10.1016/s0034-5288(18)34058-x
pubmed: 4556468
King TIML, Eackles MS, Henderson AP, Bocetti CI, Currie D, Wunderle JM Jr (2005) Microsatellite DNA markers for delineating population structure and kinship among the endangered Kirtland’s warbler (Dendroica kirtlandii). Mol Ecol Notes 5:569–571. https://doi.org/10.1111/j.1471-8286.2005.00998.x
doi: 10.1111/j.1471-8286.2005.00998.x
Knuuttila A, Aronen P, Eerola M, Gardner IA, Virtala A-MK, Vapalahti O (2014) Validation of an automated ELISA system for detection of antibodies to Aleutian mink disease virus using blood samples collected in filter paper strips. Virol J 11:141. https://doi.org/10.1186/1743-422X-11-141
doi: 10.1186/1743-422X-11-141
pubmed: 25103400
pmcid: 4254392
Koutsos EA, Minter LJ, Ange-Van Heugten KD, Mejia-Fava JC, Harms CA (2021) Blood fatty acid profiles of neritic juvenile wild green turtles (Chelonia mydas) and Kemp’s ridleys (Lepidochelys kempii). J Zoo Wildl Med 52:610–617. https://doi.org/10.1638/2019-0173
doi: 10.1638/2019-0173
pubmed: 34130404
Kraus RHS, Hooft P, Waldenström J, Latorre-Margalef N, Ydenberg R, Prins H (2009) Avian Influenza surveillance: on the usability of FTA cards to solve biosafety and transport issues. Wildfowl Special Issue 2:215–223
Kraus RHS, van Hooft P, Waldenström J, Latorre-Margalef N, Ydenberg RC, Prins HHT (2011) Avian influenza surveillance with FTA cards: field methods, biosafety, and transportation issues solved. J vis Exp 54:2832. https://doi.org/10.3791/2832
doi: 10.3791/2832
Kraus RHS, van Hooft P, Megens H-J, Tsvey A, Fokin SY, Ydenberg RC, Prins HHT (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 22:41–55. https://doi.org/10.1111/mec.12098
doi: 10.1111/mec.12098
pubmed: 23110616
Kurucz N, Wenham J, Hunt N, Melville L (2014) Murray Valley encephalitis virus detection using honeybait cards in the Northern Territory in 2013. Mosquito Bites 1:14–16
Kurucz N, Minney-Smith CA, Johansen CA (2019) Arbovirus surveillance using FTA(TM) cards in modified CO(2) -baited encephalitis virus surveillance traps in the Northern Territory, Australia. J Vector Ecol 44:187–194. https://doi.org/10.1111/jvec.12343
doi: 10.1111/jvec.12343
pubmed: 31124223
Lall GK, Darby AC, Nystedt B, Macleod ET, Bishop RP, Welburn SC (2010) Amplified fragment length polymorphism (AFLP) analysis of closely related wild and captive tsetse fly (Glossina morsitans morsitans) populations. Parasit Vectors 3:47. https://doi.org/10.1186/1756-3305-3-47
doi: 10.1186/1756-3305-3-47
pubmed: 20504326
pmcid: 2893174
Lana D, Marquardt W, Snyder D (1983) Comparison of whole blood dried on filter paper and serum for measurement of the temporal antibody response to avian infectious bronchitis virus by enzyme-linked immunosorbent assay. Avian Dis 27:813–821. https://doi.org/10.2307/1590325
doi: 10.2307/1590325
pubmed: 6314980
Léchenne M, Naïssengar K, Lepelletier A, Alfaroukh IO, Bourhy H, Zinsstag J, Dacheux L (2016) Validation of a rapid rabies diagnostic tool for field surveillance in developing countries. PLoS Negl Trop Dis 10:e0005010. https://doi.org/10.1371/journal.pntd.0005010
doi: 10.1371/journal.pntd.0005010
pubmed: 27706156
pmcid: 5051951
LeClaire S, Menard S, Berry A (2015) Molecular characterization of Babesia and Cytauxzoon species in wild South-African meerkats. Parasitology 142:543–548. https://doi.org/10.1017/S0031182014001504
doi: 10.1017/S0031182014001504
pubmed: 25374302
Lehner AF, Rumbeiha W, Shlosberg A, Stuart K, Johnson M, Domenech R, Langner H (2013) Diagnostic analysis of veterinary dried blood spots for toxic heavy metals exposure. J Anal Toxicol 37:406–422. https://doi.org/10.1093/jat/bkt048
doi: 10.1093/jat/bkt048
pubmed: 23861340
Lehner AF, Johnson M, Buchweitz J (2018) Veterinary utility of dried blood spots for analysis of toxic chlorinated hydrocarbons. Toxicol Mech Methods 28:29–37. https://doi.org/10.1080/15376516.2017.1354414
doi: 10.1080/15376516.2017.1354414
pubmed: 28693362
Lehner AF, Stensen L, Zimmerman A, Bush A, Buchweitz J (2020) Veterinary utility of dried blood spots for detailed analysis of chlorinated pesticides and polychlorinated biphenyls by gas chromatography tandem mass spectrometry. Toxicol Mech Methods 30(4):284–296. https://doi.org/10.1080/15376516.2020.1722773
doi: 10.1080/15376516.2020.1722773
pubmed: 31994964
Liang X, Chigerwe M, Hietala SK, Crossley BM (2014) Evaluation of Fast Technology Analysis (FTA) Cards as an improved method for specimen collection and shipment targeting viruses associated with Bovine Respiratory Disease Complex. J Virol Methods 202:69–72. https://doi.org/10.1016/j.jviromet.2014.02.022
doi: 10.1016/j.jviromet.2014.02.022
pubmed: 24657552
pmcid: 7113650
Lim MD (2018) Dried blood spots for global health diagnostics and surveillance: opportunities and challenges. Am J Trop Med Hyg 99:256–265. https://doi.org/10.4269/ajtmh.17-0889
doi: 10.4269/ajtmh.17-0889
pubmed: 29968557
pmcid: 6090344
Lin J, Hwang SY, Lin-Chen Y, Wang H, Wu L, Hsu T, Chang S, Ho L (1988) Early pregnancy diagnosis in sows by progesterone assay with blood paper method. Br Vet J 144:64–71. https://doi.org/10.1016/0007-1935(88)90153-4
doi: 10.1016/0007-1935(88)90153-4
pubmed: 3345418
Linhares D, Rovira A, Torremorell M (2012) Evaluation of Flinders Technology Associates cards for collection and transport of samples for detection of Porcine reproductive and respiratory syndrome virus by reverse transcription polymerase chain reaction. J Vet Diagn Invest 24:328–332. https://doi.org/10.1177/1040638711429492
doi: 10.1177/1040638711429492
pubmed: 22362527
Liu G, Mühlhäusler BS, Gibson RA (2014) A method for long term stabilisation of long chain polyunsaturated fatty acids in dried blood spots and its clinical application. Prostaglandins Leukot Essent Fatty Acids 91(6):251–260. https://doi.org/10.1016/j.plefa.2014.09.009
doi: 10.1016/j.plefa.2014.09.009
pubmed: 25451557
Love Stowell S, Bentley E, Gagne R, Gustafson K, Rutledge L, Ernest H (2018) Optimal DNA extractions from blood on preservation paper limits conservation genomic but not conservation genetic applications. J Nat Conserv 46:89–96. https://doi.org/10.1016/j.jnc.2018.09.004
doi: 10.1016/j.jnc.2018.09.004
Lucentini L, Palomba AP, Hovirag L, Mauro N, Panara F (2006) A nondestructive, rapid, reliable and inexpensive method to sample, store and extract high-quality DNA from fish body mucus and buccal cells. Mol Ecol Notes 6:257–260. https://doi.org/10.1111/j.1471-8286.2005.01142.x
doi: 10.1111/j.1471-8286.2005.01142.x
Machado EM, Alvarenga NJ, Romanha AJ, Grisard EC (2000) A simplified method for sample collection and DNA isolation for polymerase chain reaction detection of Trypanosoma rangeli and Trypanosoma cruzi in triatomine vectors. Mem Inst Oswaldo Cruz 95:863–866. https://doi.org/10.1590/s0074-02762000000600021
doi: 10.1590/s0074-02762000000600021
pubmed: 11080776
Madhanmohan M, Nagendrakumar SB, Manikumar K, Yuvaraj S, Parida S, Srinivasan VA (2013) Development and evaluation of a real-time reverse transcription-loop-mediated isothermal amplification assay for rapid serotyping of foot-and-mouth disease virus. J Virol Methods 187:195–202. https://doi.org/10.1016/j.jviromet.2012.08.015
doi: 10.1016/j.jviromet.2012.08.015
pubmed: 22960423
Madhanmohan M, Yuvaraj S, Manikumar K, Kumar R, Nagendrakumar SB, Rana SK, Srinivasan VA (2016) Evaluation of the flinders technology associates cards for storage and temperature challenges in field conditions for foot-and-mouth disease virus surveillance. Transbound Emerg Dis 63:675–680. https://doi.org/10.1111/tbed.12316
doi: 10.1111/tbed.12316
pubmed: 25598192
Maldonado J, Valls L, Riera P (2009) Method for rapid detection of swine influenza virus. Vet Rec 165:328. https://doi.org/10.1136/vr.165.11.328
doi: 10.1136/vr.165.11.328
pubmed: 19749213
Manswr B, Ball C, Forrester A, Chantrey J, Ganapathy K (2018) Evaluation of full S1 gene sequencing of classical and variant infectious bronchitis viruses extracted from allantoic fluid and FTA cards. Avian Pathol 47:418–426. https://doi.org/10.1080/03079457.2018.1471196
doi: 10.1080/03079457.2018.1471196
pubmed: 29712443
Maucher JM, Briggs L, Podmore C, Ramsdell JS (2007) Optimization of blood collection card method/enzyme-linked immunoassay for monitoring exposure of bottlenose dolphin to brevetoxin-producing red tides. Environ Sci Technol 41(2):563–567. https://doi.org/10.1021/es0612605
doi: 10.1021/es0612605
pubmed: 17310722
Maw MT, Yamaguchi T, Kasanga CJ, Terasaki K, Fukushi H (2006) A practical tissue sampling method using ordinary paper for molecular detection of infectious bursal disease virus RNA by RT-PCR. Avian Dis 50:556–560. https://doi.org/10.1637/7537-032806R.1
doi: 10.1637/7537-032806R.1
pubmed: 17274294
McClendon-Weary B, Putnick DL, Robinson S, Yeung E (2020) Little to give, much to gain-what can you do with a dried blood spot? Curr Environ Heal Reports 7:211–221. https://doi.org/10.1007/s40572-020-00289-y
doi: 10.1007/s40572-020-00289-y
McHuron EA, Castellini JM, Rios CA, Berner J, Gulland FMD, Greig DJ, O’Hara TM (2019) Hair, whole blood, and blood-soaked cellulose paper-based risk assessment of mercury concentrations in stranded California pinnipeds. J Wildl Dis 55:823–833. https://doi.org/10.7589/2018-11-276
doi: 10.7589/2018-11-276
pubmed: 31081740
McLean G, Hilbink F (1989) Use of dried blood on filter paper in the ELISA for Brucella abortus. J Immunol Methods 123:39–43. https://doi.org/10.1016/0022-1759(89)90027-6
doi: 10.1016/0022-1759(89)90027-6
pubmed: 2507643
Meesters RJ, Hooff GP (2013) State-of-the-art dried blood spot analysis: an overview of recent advances and future trends. Bioanalysis 5:2187–2208. https://doi.org/10.4155/bio.13.175[doi]
Mercier A, Garba M, Bonnabau H, Kane M, Rossi J-P, Dardé M-L, Dobigny G (2013) Toxoplasmosis seroprevalence in urban rodents: a survey in Niamey. Niger Mem Inst Oswaldo Cruz 108:399–407. https://doi.org/10.1590/S0074-0276108042013002
doi: 10.1590/S0074-0276108042013002
pubmed: 23828008
Michaels CJ, Antwis RE, Preziosi RF (2015) Impacts of UVB provision and dietary calcium content on serum vitamin D 3, growth rates, skeletal structure and coloration in captive oriental fire-bellied toads (Bombina orientalis). J Anim Physiol Anim Nutr 99:391–403. https://doi.org/10.1111/jpn.12203
doi: 10.1111/jpn.12203
Michaud V, Gil P, Kwiatek O, Prome S, Dixon L, Romero L, Le Potier MF, Arias M, Couacy-Hymann E, Roger F, Libeau G, Albina E (2007) Long-term storage at tropical temperature of dried-blood filter papers for detection and genotyping of RNA and DNA viruses by direct PCR. J Virol Methods 146:257–265. https://doi.org/10.1016/j.jviromet.2007.07.006
doi: 10.1016/j.jviromet.2007.07.006
pubmed: 17714797
Miller G, Carmichael A, Favret C, Scheffer S (2013) Room temperature DNA storage with slide-mounted aphid specimens. Insect Conserv Divers 6:447–451. https://doi.org/10.1111/j.1752-4598.2012.00207.x
doi: 10.1111/j.1752-4598.2012.00207.x
Minga UM, Wray C (1992) A disc ELISA for the detection of Salmonella group D antibodies in poultry. Res Vet Sci 52:384–386. https://doi.org/10.1016/0034-5288(92)90043-2
doi: 10.1016/0034-5288(92)90043-2
pubmed: 1620974
Minga UM, Wray C, Gwakisa PS (1992) Serum, disc and egg ELISA for the serodiagnosis of Salmonella gallinarum and S. enteritidis infections in chickens. Scand J Immunol 36:157–159. https://doi.org/10.1111/j.1365-3083.1992.tb01641.x
doi: 10.1111/j.1365-3083.1992.tb01641.x
Moeller BC, Yang Z (2021) Evaluation of dried blood spots as an alternative sample matrix for equine antidoping analysis. Drug Test Anal 13:386–396. https://doi.org/10.1002/dta.2934
doi: 10.1002/dta.2934
pubmed: 33001574
Mohamed R, Mercolini L, Cuennet-Cosandey S, Chavent J, Raggi MA, Peyrou M (2012) Validation of a dried blood spot LC-MS/MS approach for cyclosporin A in cat blood: Comparison with a classical sample preparation. J Pharm Biomed Anal 66:298–305. https://doi.org/10.1016/j.jpba.2012.03.049
doi: 10.1016/j.jpba.2012.03.049
pubmed: 22522039
Mohammed-Ahmed GM, Hassan S, Elhussein A, Salih D (2018) Molecular, serological and parasitological survey of Theileria annulata in North Kordofan State, Sudan. Vet Parasitol Reg Stud Reports 13:24–29. https://doi.org/10.1016/j.vprsr.2018.03.006
doi: 10.1016/j.vprsr.2018.03.006
pubmed: 31014883
Moittié S, Graham PA, Barlow N, Dobbs P, Liptovszky M, Redrobe S, White K (2020) Comparison of 25-hydroxyvitamin D concentration in chimpanzee dried blood spots and serum. Vet Clin Pathol 49(2):299–306. https://doi.org/10.1111/vcp.12863
doi: 10.1111/vcp.12863
pubmed: 32441404
Moscoso H, Thayer SG, Hofacre CL, Kleven SH (2004) Inactivation, storage, and PCR detection of Mycoplasma on FTA filter paper. Avian Dis 48:841–850. https://doi.org/10.1637/7215-060104
doi: 10.1637/7215-060104
pubmed: 15666865
Moscoso H, Raybon EO, Thayer SG, Hofacre CL (2005) Molecular detection and serotyping of infectious bronchitis virus from FTA filter paper. Avian Dis 49:24–29. https://doi.org/10.1637/7220
doi: 10.1637/7220
pubmed: 15839408
Moscoso H, Alvarado I, Hofacre CL (2006) Molecular analysis of infectious bursal disease virus from bursal tissues collected on FTA filter paper. Avian Dis 50:391–396. https://doi.org/10.1637/7505-011306R.1
doi: 10.1637/7505-011306R.1
pubmed: 17039839
Moscoso H, Bruzual JJ, Sellers H, Hofacre CL (2007) FTA liver impressions as DNA template for detecting and genotyping fowl adenovirus. Avian Dis 51:118–121. https://doi.org/10.1637/0005-2086(2007)051[0118:FLIADT]2.0.CO;2
doi: 10.1637/0005-2086(2007)051[0118:FLIADT]2.0.CO;2
pubmed: 17461276
Motha J, Oliver RE, Penrose ME, Forbes S, Montgomery JF (1987) Evaluation of whole blood collected on to paper discs for the sero-diagnosis of Anjesjky’s disease by ELISA. N Z Vet J 35:77–79. https://doi.org/10.1080/00480169.1987.35392
doi: 10.1080/00480169.1987.35392
pubmed: 16031384
Moti Y, Fikru R, Büscher P, Van Den Abbeele J, Duchateau L, Delespaux V (2014) Detection of African animal trypanosomes: the haematocrit centrifugation technique compared to PCR with samples stored on filter paper or in DNA protecting buffer. Vet Parasitol 203:253–258. https://doi.org/10.1016/j.vetpar.2014.04.014
doi: 10.1016/j.vetpar.2014.04.014
pubmed: 24836424
Mucker EM, Dubey JP, Lovallo MJ, Humphreys JG (2006) Seroprevalence of antibodies to Toxoplasma gondii in the Pennsylvania bobcat (Lynx rufus rufus). J Wildl Dis 42:188–191. https://doi.org/10.7589/0090-3558-42.1.188
doi: 10.7589/0090-3558-42.1.188
pubmed: 16699165
Mueller-Anneling L, Gilchrist MJ, Thorne PS (2000) Ehrlichia chaffeensis antibodies in white-tailed deer, Iowa, 1994 and 1996. Emerg Infect Dis 6:397–400. https://doi.org/10.3201/eid0604.000414
doi: 10.3201/eid0604.000414
pubmed: 10905976
pmcid: 2640891
Muhanguzi D, Picozzi K, Hattendorf J, Thrusfield M, Kabasa JD, Waiswa C, Welburn SC (2014) The burden and spatial distribution of bovine African trypanosomes in small holder crop-livestock production systems in Tororo District, south-eastern Uganda. Parasit Vectors 7:603. https://doi.org/10.1186/s13071-014-0603-6
doi: 10.1186/s13071-014-0603-6
pubmed: 25532828
pmcid: 4300167
Muthukrishnan M, Singanallur NB, Ralla K, Villuppanoor SA (2008) Evaluation of FTA cards as a laboratory and field sampling device for the detection of foot-and-mouth disease virus and serotyping by RT-PCR and real-time RT-PCR. J Virol Methods 151:311–316. https://doi.org/10.1016/j.jviromet.2008.05.020
doi: 10.1016/j.jviromet.2008.05.020
pubmed: 18584888
Narayanan M, Parthiban M, Sathiya P, Kathaperumal K, Narayanan K (2010) Molecular detection of Newcastle disease virus using Flinders Tehnology Associates-PCR. Vet Arh 80:55–60
Natarajan P, Trinh T, Mertz L, Goldsborough M, Fox DK (2000) Paper-based archiving of mammalian and plant samples for RNA analysis. Biotechniques 29:1328–1333. https://doi.org/10.2144/00296pf01
doi: 10.2144/00296pf01
pubmed: 11126136
Navaneeth Krishnan A, Bhuvaneswari T, Ezhil Praveena P, Jithendran KP (2016) Paper-based archiving of biological samples from fish for detecting betanodavirus. Arch Virol 161:2019–2024. https://doi.org/10.1007/s00705-016-2875-y
doi: 10.1007/s00705-016-2875-y
pubmed: 27146046
Nemeth NM, Bosco-Lauth AM, Williams LM, Bowen RA, Brown JD (2017) West Nile virus infection in ruffed grouse (Bonasa umbellus): Experimental infection and protective effects of vaccination. Vet Pathol 54:901–911. https://doi.org/10.1177/0300985817717770
doi: 10.1177/0300985817717770
pubmed: 28675106
Nemeth NM, Williams LM, Bosco-Lauth AM, Oesterle PT, Helwig M, Bowen RA, Brown JD (2021) West Nile virus infection in ruffed grouse (Bonasa umbellus) in Pennsylvania, USA: A multi-year comparison of statewide serosurveys and vector indices. J Wildl Dis 57:51–59. https://doi.org/10.7589/JWD-D-19-00016
doi: 10.7589/JWD-D-19-00016
pubmed: 33635996
Niare S, Almeras L, Tandina F, Yssouf A, Bacar A, Toilibou A, Doumbo O, Raoult D, Parola P (2017) MALDI-TOF MS identification of Anopheles gambiae Giles blood meal crushed on Whatman filter papers. PLoS ONE 12:e0183238. https://doi.org/10.1371/journal.pone.0183238
doi: 10.1371/journal.pone.0183238
pubmed: 28817629
pmcid: 5560667
Nobuto K (1966) Toxoplasmosis in animal and laboratory diagnosis. Jpn Agric ResQ 1:11–18
Nogami S, Kamata H, Maruyama S, Furuya H, Inoue I (1992) Preservation of feline anti-Toxoplasma gondii antibody activity using blood absorbed on filter paper stored under different conditions. Res Vet Sci 52:387–388. https://doi.org/10.1016/0034-5288(92)90044-3
doi: 10.1016/0034-5288(92)90044-3
pubmed: 1320286
Nunes CM, Dias AKK, Gottardi FP, De Paula HB, De Azevedo MAA, De Lima VMF, Garcia JF (2007) Polymerase chain reaction evaluation for canine visceral leishmaniasis diagnosis in dog blood samples (article in Portuguese). Rev Bras Parasitol Vet 16:5–9
pubmed: 17588315
Nunziata S, Wallenhorst P, Barrett M, Junge R, Yoder A, Weisrock D (2016) Population and conservation genetics in an Endangered lemur, Indri indri, across three forest reserves in Madagascar. Int J Primatol 37:688–702. https://doi.org/10.1007/s10764-016-9932-y
doi: 10.1007/s10764-016-9932-y
O’Hara TM, Templeton M, Castellini JM, Wells R, Beckmen K, Berner J (2018) Use of blood-soaked cellulose filter paper for measuring carbon and nitrogen stable isotopes. J Wildlife Dis 54(2):375–379. https://doi.org/10.7589/2017-08-202
doi: 10.7589/2017-08-202
Oliveira FS, Pirmez C, Pires MQ, Brazil RP, Pacheco RS (2005) PCR-based diagnosis for detection of Leishmania in skin and blood of rodents from an endemic area of cutaneous and visceral leishmaniasis in Brazil. Vet Parasitol 129:219–227. https://doi.org/10.1016/j.vetpar.2005.01.005
doi: 10.1016/j.vetpar.2005.01.005
pubmed: 15845276
Olsson GE, Ahlm C, Elgh F, Verlemyr A-C, White N, Juto P, Palo RT (2003) Hantavirus antibody occurrence in bank voles (Clethrionomys glareolus) during a vole population cycle. J Wildl Dis 39:299–305. https://doi.org/10.7589/0090-3558-39.2.299
doi: 10.7589/0090-3558-39.2.299
pubmed: 12910756
Ortiz PA, Garcia HA, Lima L, da Silva FM, Campaner M, Pereira CL, Jittapalapong S, Neves L, Desquesnes M, Camargo EP, Teixeira MMG (2018) Diagnosis and genetic analysis of the worldwide distributed Rattus-borne Trypanosoma (Herpetosoma) lewisi and its allied species in blood and fleas of rodents. Infect Genet Evol 63:380–390. https://doi.org/10.1016/j.meegid.2017.09.001
doi: 10.1016/j.meegid.2017.09.001
pubmed: 28882517
Owens CB, Szalanski AL (2005) Filter paper for preservation, storage, and distribution of insect and pathogen DNA samples. J Med Entomol 42:709–711. https://doi.org/10.1093/jmedent/42.4.709
doi: 10.1093/jmedent/42.4.709
pubmed: 16119565
Palatnik-de-Sousa CB, Batista-de-Melo LM, Borja-Cabrera GP, Palatnik M, Lavor CC (2004) Improving methods for epidemiological control of canine visceral leishmaniasis based on a mathematical model. Impact on the incidence of the canine and human disease. An Acad Bras Cienc 76:583–593. https://doi.org/10.1590/s0001-37652004000300012
doi: 10.1590/s0001-37652004000300012
pubmed: 15334256
Perkins M, Basu N (2018) Dried blood spots for estimating mercury exposure in birds. Environ Pollut 236:236–246. https://doi.org/10.1016/j.envpol.2018.01.036
doi: 10.1016/j.envpol.2018.01.036
pubmed: 29414345
Perozo F, Villegas P, Estevez C, Alvarado I, Purvis LB (2006) Use of FTA filter paper for the molecular detection of Newcastle disease virus. Avian Pathol 35:93–98. https://doi.org/10.1080/03079450600597410
doi: 10.1080/03079450600597410
pubmed: 16595299
Picard-Meyer E, Barrat J, Cliquet F (2007) Use of filter paper (FTA) technology for sampling, recovery and molecular characterisation of rabies viruses. J Virol Methods 140:174–182. https://doi.org/10.1016/j.jviromet.2006.11.011
doi: 10.1016/j.jviromet.2006.11.011
pubmed: 17157394
Picozzi K, Tilley F, Coleman MJ, Odiit EM, Welburn S (2002) The diagnosis of trypanosome infections: Applications of novel technology for reducing disease risk. African J Biotechnol 1:39–45. https://doi.org/10.5897/AJB2002.000-007
doi: 10.5897/AJB2002.000-007
Pitcovski J, Shmueli E, Krispel S, Levi N (1999) Storage of viruses on filter paper for genetic analysis. J Virol Methods 83:21–26. https://doi.org/10.1016/s0166-0934(99)00101-9
doi: 10.1016/s0166-0934(99)00101-9
pubmed: 10598079
Platt KB, Adams LG (1976) Evaluation of the indirect fluorescent antibody test for detecting Trypanosoma vivax in South American cattle. Res Vet Sci 21:53–58
doi: 10.1016/S0034-5288(18)33393-9
Posyniak A, Zmudzki J, Niedzielska J (2002) Liquid chromatography analysis of enrofloxacin and ciprofloxacin in chicken blood spotted on filter-paper disks. J Chromatogr B Anal Technol Biomed Life Sci 780:309–314. https://doi.org/10.1016/S1570-0232(02)00540-8
doi: 10.1016/S1570-0232(02)00540-8
Proboste T, Kalema-Zikusoka G, Altet L, Solano-Gallego L, Fernández de Mera IG, Chirife AD, Muro J, Bach E, Piazza A, Cevidanes A, Blanda V, Mugisha L, de la Fuente J, Caracappa S, Millán J (2015) Infection and exposure to vector-borne pathogens in rural dogs and their ticks, Uganda. Parasit Vectors 8:306. https://doi.org/10.1186/s13071-015-0919-x
doi: 10.1186/s13071-015-0919-x
pubmed: 26043771
pmcid: 4460633
Purvis LB, Villegas P, Perozo F (2006) Evaluation of FTA paper and phenol for storage, extraction and molecular characterization of infectious bursal disease virus. J Virol Methods 138:66–69. https://doi.org/10.1016/j.jviromet.2006.07.021
doi: 10.1016/j.jviromet.2006.07.021
pubmed: 16978712
Pusterla N, Chang CC, Chomel BB, Chae JS, Foley JE, DeRock E, Kramer VL, Lutz H, Madigan JE (2000) Serologic and molecular evidence of Ehrlichia spp. in coyotes in California. J Wildl Dis 36:494–499. https://doi.org/10.7589/0090-3558-36.3.494
doi: 10.7589/0090-3558-36.3.494
pubmed: 10941735
Quintana F, López G, Somoza G (2009) A cheap and quick method for DNA-based sexing of birds. Waterbirds 31:485–488. https://doi.org/10.1675/1524-4695-31.3.485
doi: 10.1675/1524-4695-31.3.485
Randriamparany T, Kouakou KV, Michaud V, Fernández-Pinero J, Gallardo C, Le Potier M-F, Rabenarivahiny R, Couacy-Hymann E, Raherimandimby M, Albina E (2014) African swine fever diagnosis adapted to tropical conditions by the use of dried-blood filter papers. Transbound Emerg Dis 63:379–388. https://doi.org/10.1111/tbed.12295
doi: 10.1111/tbed.12295
pubmed: 25430732
Rasolonjatovo FS, Guis H, Rajeev M, Dacheux L, Arivony Nomenjanahary L, Razafitrimo G, Rafisandrantantsoa JT, Cêtre-Sossah C, Heraud J-M, Andriamandimby SF (2020) Enabling animal rabies diagnostic in low-access areas: Sensitivity and specificity of a molecular diagnostic test from cerebral tissue dried on filter paper. PLoS Negl Trop Dis 14:e0008116. https://doi.org/10.1371/journal.pntd.0008116
doi: 10.1371/journal.pntd.0008116
pubmed: 32142519
pmcid: 7135319
Reeves LE, Holderman CJ, Gillett-Kaufman JL, Kawahara AY, Kaufman PE (2016) Maintenance of host DNA integrity in field-preserved mosquito (Diptera: Culicidae) blood meals for identification by DNA barcoding. Parasit Vectors 9:503. https://doi.org/10.1186/s13071-016-1791-z
doi: 10.1186/s13071-016-1791-z
pubmed: 27629021
pmcid: 5024527
Reisen WK, Presser SB, Lin J, Enge B, Hardy JL, Emmons RW (1994) Viremia and serological responses in adult chickens infected with western equine encephalomyelitis and St. Louis encephalitis viruses. J Am Mosq Control Assoc 10:549–555
pubmed: 7707063
Ritchie SA, Cortis G, Paton C, Townsend M, Shroyer D, Zborowski P, Hall-Mendelin S, Van Den Hurk AF (2013) A simple non-powered passive trap for the collection of mosquitoes for arbovirus surveillance. J Med Entomol 50:185–194. https://doi.org/10.1603/me12112
doi: 10.1603/me12112
pubmed: 23427669
Rivas AE, Conley K, Seimon TA, Hollinger C, Knych H, Moore RP, Paré JA (2021) Sarcocystosis in a captive flock of thick-billed parrots (Rhynchopsitta pachyrhyncha) from 2005 to 2016: morbidity, mortality, diagnostics, and management strategies. J Zoo Wildl Med 52:206–216. https://doi.org/10.1638/2020-0044
doi: 10.1638/2020-0044
pubmed: 33827178
Rosypal AC, Pick LD, Hernandez JOE, Lindsay DS (2014) Evaluation of a novel dried blood spot collection device (HemaSpotTM) to test blood samples collected from dogs for antibodies to Leishmania infantum. Vet Parasitol 205:338–342. https://doi.org/10.1016/j.vetpar.2014.07.031
doi: 10.1016/j.vetpar.2014.07.031
pubmed: 25129335
Roy P, Nachimuthu K, Venugopalan AT (1992) A modified filter paper technique for serosurveillance of Newcastle disease. Vet Res Commun 16:403–406. https://doi.org/10.1007/BF01839189
doi: 10.1007/BF01839189
pubmed: 1494864
Roy P, Nachimuthu K, Venugopalan AT, Dorairajan N, Purushothaman V, Koteeswaran A (1994) Filter paper technique for seromonitoring against infectious bursal disease. Trop Anim Health Prod 26:251–252. https://doi.org/10.1007/BF02240397
doi: 10.1007/BF02240397
pubmed: 7900225
Roy P, Nachimuthu K, Koteeswaran A, Albert A, Venugopalan AT (1997) Postvaccinal immune response to regimens of Newcastle disease vaccination by filter paper sampling technique. Trop Anim Health Prod 29:20–24. https://doi.org/10.1007/bf02632339
doi: 10.1007/bf02632339
pubmed: 9090011
Russomando G, Rojas de Arias A, Almiron M, Figueredo A, Ferreira ME, Morita K (1996) Trypanosoma cruzi: polymerase chain reaction-based detection in dried feces of Triatoma infestans. Exp Parasitol 83:62–66. https://doi.org/10.1006/expr.1996.0049
doi: 10.1006/expr.1996.0049
pubmed: 8654552
Sacks BN, Brown SK, Ernest HB (2004) Population structure of California coyotes corresponds to habitat-specific breaks and illuminates species history. Mol Ecol 13:1265–1275. https://doi.org/10.1111/j.1365-294X.2004.02110.x
doi: 10.1111/j.1365-294X.2004.02110.x
pubmed: 15078462
Sacks BN, Chomel BB, Kasten RW, Chang CC, Sanders RK, Leterme SD (2002) Validation for use with coyotes (Canis latrans) of a commercially available enzyme-linked immunosorbent assay for Dirofilaria immitis. Vet Parasitol 109:45–58. https://doi.org/10.1016/s0304-4017(02)00254-6
doi: 10.1016/s0304-4017(02)00254-6
pubmed: 12383624
Sakai T, Ishii A, Segawa T, Takagi Y, Kobayashi Y, Itou T (2015) Establishing conditions for the storage and elution of rabies virus RNA using FTA(®) cards. J Vet Med Sci 77:461–465. https://doi.org/10.1292/jvms.14-0227
doi: 10.1292/jvms.14-0227
pubmed: 25648208
Salim B, Bakheit MA, Kamau J, Nakamura I, Sugimoto C (2011) Molecular epidemiology of camel trypanosomiasis based on ITS1 rDNA and RoTat 1.2 VSG gene in the Sudan. Parasit Vectors 4:31. https://doi.org/10.1186/1756-3305-4-31
doi: 10.1186/1756-3305-4-31
pubmed: 21375725
pmcid: 3060148
Samsonova JV, Osipov AP, Kondakov SE (2014) A new dried milk sampling technique and its application for progesterone detection in cows. Vet J 199:471–472. https://doi.org/10.1016/j.tvjl.2013.10.031
doi: 10.1016/j.tvjl.2013.10.031
pubmed: 24461204
Samsonova JV, Chadina AD, Osipov AP, Kondakov SE (2016) Porous membrane strip microsampling: a dried biofluid collection format and application for quantitative enzyme immunoassay. Anal Methods 8:4835–4843. https://doi.org/10.1039/C6AY00724D
doi: 10.1039/C6AY00724D
Samsonova JV, Osipov AP, Kondakov SE (2017) Strip-dried whole milk sampling technique for progesterone detection in cows by ELISA. Talanta 175:143–149. https://doi.org/10.1016/j.talanta.2017.07.032
doi: 10.1016/j.talanta.2017.07.032
pubmed: 28841971
Samsonova JV, Saushkin NY, Osipov AP, Yakovlev SS, Rozhdestvenskaya TN (2019a) Dried blood samples for transportation and analysis during poultry post-vaccination control (article in Russian). Poult Chick Prod 21:48–52. https://doi.org/10.30975/2073-4999-2019-21-5-48-52
doi: 10.30975/2073-4999-2019-21-5-48-52
Samsonova JV, Saushkin NY, Osipov AP, Kondakov SE, Fomina SN, Mischenko AV (2019b) Detection of antibodies against foot-and-mouth disease virus serotypes A, O and Asia-1 by ELISA in strip-dried samples from vaccinated bovines. Appl Biochem Biotechnol 188:491–497. https://doi.org/10.1007/s12010-018-02938-3
doi: 10.1007/s12010-018-02938-3
pubmed: 30536031
Samsonova JV, Saushkin NY, Osipov AP (2022) Dried samples of biological fluids on porous membranes as a promising sample preparation method for biomedical and veterinary diagnostics. J Anal Chem 77(4):410–428. https://doi.org/10.1134/S1061934822040104
doi: 10.1134/S1061934822040104
Sander J, Terhardt M, Sander S, Janzen N (2018) Use of a standard newborn screening test for the rapid diagnosis of inhibited ß-oxidation in atypical myopathy in horses. J Equine Vet Sci 67:71–74. https://doi.org/10.1016/j.jevs.2018.03.010
doi: 10.1016/j.jevs.2018.03.010
Santos N, Nunes T, Fonseca C, Vieira-Pinto M, Almeida V, Gortázar C, Correia-Neves M (2018) Spatial analysis of wildlife tuberculosis based on a serologic survey using dried blood spots, Portugal. Emerg Infect Dis 24:2169–2175. https://doi.org/10.3201/eid2412.171357
doi: 10.3201/eid2412.171357
pubmed: 30457522
pmcid: 6256377
Sarangi LN, Naveena T, Rana SK, Surendra KSNL, Reddy RVC, Bajibabu P, Ponnanna NM, Sharma GK, Srinivasan VA (2018) Evaluation of a specialized filter-paper matrix for transportation of extended bovine semen to screen for bovine herpesvirus-1 by real-time PCR. J Virol Methods 257:1–6. https://doi.org/10.1016/j.jviromet.2018.03.009
doi: 10.1016/j.jviromet.2018.03.009
pubmed: 29588253
pmcid: 7119822
Saushkin NY, Samsonova JV, Osipov AP, Kondakov CE, Efimova MA, Chernov AN (2016a) A new sampling format for the diagnostics of bovine infectious diseases in dried blood spots by ELISA. Moscow Univ Chem Bull 71:253–257. https://doi.org/10.3103/S0027131416040088
doi: 10.3103/S0027131416040088
Saushkin NY, Samsonova JV, Osipov AP, Kondakov SE, Khammadov NI, Usoltsev KV, Makaev KZ, Chernov AN (2016b) Comparison of PCR and ELISA methods for the detection of bovine leucosis in dried blood spots. Moscow Univ Chem Bull 71:319–323. https://doi.org/10.3103/S0027131416050084
doi: 10.3103/S0027131416050084
Saushkin NY, Samsonova JV, Osipov AP, Kondakov SE, Lysova ES, Elizarova IA, Khaertynov KS, Shuralev EA (2018) Strip-dried biofluids for the detection of specific antibodies in small, infected ruminants. Moscow Univ Chem Bull 73:135–137. https://doi.org/10.3103/S0027131418030069
doi: 10.3103/S0027131418030069
Saushkin NY, Samsonova JV, Osipov AP, Kondakov SE (2019) Strip-dried blood sampling: applicability for bovine leukemia virus detection with ELISA and real-time PCR. J Virol Methods 263:101–104. https://doi.org/10.1016/j.jviromet.2018.11.004
doi: 10.1016/j.jviromet.2018.11.004
pubmed: 30412721
Sazmand A, Eigner B, Mirzaei M, Hekmatimoghaddam SH, Harl J, Duscher GG, Fuehrer H-P, Joachim A (2016) Molecular identification of hemoprotozoan parasites in camels (Camelus dromedarius) of Iran. Iran J Parasitol 11:568–573
pubmed: 28127369
pmcid: 5251186
Sewell AC, Haskins ME, Giger U (2012) Dried blood spots for the enzymatic diagnosis of lysosomal storage diseases in dogs and cats. Vet Clin Pathol 41:548–557. https://doi.org/10.1111/j.1939-165x.2012.00485.x
doi: 10.1111/j.1939-165x.2012.00485.x
pubmed: 23121383
pmcid: 3524343
Sharma A, Jaiswal S, Shukla M, Lal J (2014) Dried blood spots: concepts, present status, and future perspectives in bioanalysis. Drug Test Anal 6:399–414. https://doi.org/10.1002/dta.1646
doi: 10.1002/dta.1646
pubmed: 24692095
Sharma R, Parker S, Al-Adhami B, Bachand N, Jenkins E (2019) Comparison of tissues (heart vs. brain) and serological tests (MAT, ELISA and IFAT) for detection of Toxoplasma gondii in naturally infected wolverines (Gulo gulo) from the Yukon, Canada. Food Waterborne Parasitol 15:e00046. https://doi.org/10.1016/j.fawpar.2019.e00046
doi: 10.1016/j.fawpar.2019.e00046
pubmed: 32095617
pmcid: 7034044
Shekaili T Al, Clough H, Ganapathy K, Baylis M (2015) Sero-surveillance and risk factors for avian influenza and Newcastle disease virus in backyard poultry in Oman. Prev Vet Med 122:145–153. https://doi.org/10.1016/j.prevetmed.2015.09.011
doi: 10.1016/j.prevetmed.2015.09.011
pubmed: 26431926
Shlosberg A, Rumbeiha WK, Lublin A, Kannan K (2011) A database of avian blood spot examinations for exposure of wild birds to environmental toxicants: The DABSE biomonitoring project. J Environ Monit 13:1547–1558. https://doi.org/10.1039/c0em00754d
doi: 10.1039/c0em00754d
pubmed: 21468424
Shlosberg A, Wu Q, Rumbeiha WK, Lehner A, Cuneah O, King R, Hatzofe O, Kannan K, Johnson M (2012) Examination of Eurasian griffon vultures (Gyps fulvus fulvus) in Israel for exposure to environmental toxicants using dried blood spots. Arch Environ Contam Toxicol 62:502–511. https://doi.org/10.1007/s00244-011-9709-4
doi: 10.1007/s00244-011-9709-4
pubmed: 22021042
Silva P, Guan X, Ho-Shing O, Jones J, Xu J, Hui D, Notter D, Smith E (2009) Mitochondrial DNA-based analysis of genetic variation and relatedness among Sri Lankan indigenous chickens and the Ceylon junglefowl (Gallus lafayetti). Anim Genet 40:1–9. https://doi.org/10.1111/j.1365-2052.2008.01783.x
doi: 10.1111/j.1365-2052.2008.01783.x
pubmed: 18945292
Singh H, Mishra A, Rao J, Tewari AK, Singh R (2009) Use of dried blood samples as antibody source for detection of Babesia bigemina infection in cattle by indirect fluorescent antibody test. J Vet Parasitol 23:9–12
Sintasath DM, Wolfe ND, LeBreton M, Jia H, Garcia AD, Diffo JLD, Tamoufe U, Carr JK, Folks TM, Mpoudi-Ngole E, Burke DS, Heneine W, Switzer WM (2009a) Simian T-lymphotropic virus diversity among nonhuman primates, Cameroon. Emerg Infect Dis 15:175–184. https://doi.org/10.3201/eid1502.080584
doi: 10.3201/eid1502.080584
pubmed: 19193260
pmcid: 2657614
Sintasath DM, Wolfe ND, Zheng HQ, LeBreton M, Peeters M, Tamoufe U, Djoko CF, Diffo JLD, Mpoudi-Ngole E, Heneine W, Switzer WM (2009b) Genetic characterization of the complete genome of a highly divergent simian T-lymphotropic virus (STLV) type 3 from a wild Cercopithecus mona monkey. Retrovirology 6:97. https://doi.org/10.1186/1742-4690-6-97
doi: 10.1186/1742-4690-6-97
pubmed: 19860877
pmcid: 2777865
Smit PW, Elliott I, Peeling RW, Mabey D, Newton PN (2014) An overview of the clinical use of filter paper in the diagnosis of tropical diseases. Am J Trop Med Hyg 90:195–210. https://doi.org/10.4269/ajtmh.13-0463
doi: 10.4269/ajtmh.13-0463
pubmed: 24366501
pmcid: 3919219
Smith LM, Burgoyne LA (2004) Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecol 4:4. https://doi.org/10.1186/1472-6785-4-4
doi: 10.1186/1472-6785-4-4
pubmed: 15072582
pmcid: 406513
Snowden KF, Logan KS, Vinson SB (2002) Simple, filter-based PCR detection of Thelohania solenopsae (Microspora) in fire ants (Solenopsis invicta). J Eukaryot Microbiol 49:447–448. https://doi.org/10.1111/j.1550-7408.2002.tb00226.x
doi: 10.1111/j.1550-7408.2002.tb00226.x
pubmed: 12503678
Spagnuolo-Weaver M, Walker I, McNeilly F, Calvert V, Graham D, Burns K, Adair B, Allan G (1998) The reverse transcription polymerase chain reaction for the diagnosis of porcine reproductive and respiratory syndrome: Comparison with virus isolation and serology. Vet Microbiol 62:207–215. https://doi.org/10.1016/S0378-1135(98)00212-0
doi: 10.1016/S0378-1135(98)00212-0
pubmed: 9791868
Stallknecht DE, Davidson WR (1992) Antibodies to bluetongue and epizootic hemorrhagic disease viruses from white-tailed deer blood samples dried on paper strips. J Wildl Dis 28:306–310. https://doi.org/10.7589/0090-3558-28.2.306
doi: 10.7589/0090-3558-28.2.306
pubmed: 1318425
Stewart B, Trautman C, Cox F, Spann H, Hardin J, Dittmar R, Edwards D (2019) Survey of Reticuloendotheliosis virus in wild turkeys (Meleagris gallopavo) in Texas, USA. J Wildl Dis 55:689–693. https://doi.org/10.7589/2018-08-187
doi: 10.7589/2018-08-187
pubmed: 30557122
Strauss-Ayali D, Jaffe CL, Burshtain O, Gonen L, Baneth G (2004) Polymerase chain reaction using noninvasively obtained samples, for the detection of Leishmania infantum DNA in dogs. J Infect Dis 189:1729–1733. https://doi.org/10.1086/383281
doi: 10.1086/383281
pubmed: 15116312
Sudhakaran R, Mekata T, Kono T, Supamattaya K, Linh NTH, Suzuki Y, Sakai M, Itami T (2009) A simple non-enzymatic method for the preparation of white spot syndrome virus (WSSV) DNA from the haemolymph of Marsupenaeus japonicus using FTA matrix cards. J Fish Dis 32:611–617. https://doi.org/10.1111/j.1365-2761.2009.01042.x
doi: 10.1111/j.1365-2761.2009.01042.x
pubmed: 19476557
Sullivan H, Linz G, Clark L, Salman M (2006) West Nile virus antibody prevalence in red-winged blackbirds (Agelaius phoeniceus) from North Dakota, USA (2003–2004). Vector Borne Zoonotic Dis 6:305–309. https://doi.org/10.1089/vbz.2006.6.305
doi: 10.1089/vbz.2006.6.305
pubmed: 16989570
Sun D, Il CY, Comyn P, Yoon KJ (2013) Use of blood collected onto and dried on filter paper for diagnosing pregnancy in cattle. Vet J 198:494–497. https://doi.org/10.1016/j.tvjl.2013.09.016
doi: 10.1016/j.tvjl.2013.09.016
pubmed: 24269104
Suriyaphol G, Kunnasut N, Sirisawadi S, Wanasawaeng W, Dhitavat S (2014) Evaluation of dried blood spot collection paper blotters for avian sexing by direct PCR. Br Poult Sci 55:321–328. https://doi.org/10.1080/00071668.2014.925087
doi: 10.1080/00071668.2014.925087
pubmed: 24875666
Tani H, Tada Y, Sasai K, Baba E (2008) Improvement of DNA extraction method for dried blood spots and comparison of four PCR methods for detection of Babesia gibsoni (Asian genotype) infection in canine blood samples. J Vet Med Sci 70:461–467. https://doi.org/10.1292/jvms.70.461
doi: 10.1292/jvms.70.461
pubmed: 18525167
Thangavelu A, Raj GD, Elankumaran S, Koteeswaran A (2000) Evaluation of a filter paper blood sampling technique for quantitative assessment of antibodies to infectious bursal disease virus. Trop Anim Health Prod 32:179–182. https://doi.org/10.1023/a:1005239816285
doi: 10.1023/a:1005239816285
pubmed: 10907289
Todorovic R, Garcia R (1978) Comparison of the dried blood on filter paper and serum techniques for the diagnosis of bovine babesiosis utilizing the indirect fluorescent antibody (IFA) test. Tropenmed Parasitol 29:88–94
pubmed: 347654
Trudeau S, Mineau P, Cartier SG, Fitzgerald G, Wilson L, Wheler C, Knopper LD (2007) Using dried blood spots stored on filter paper to measure cholinesterase activity in wild avian species. Biomarkers 12:145–154. https://doi.org/10.1080/13547500600907788
doi: 10.1080/13547500600907788
pubmed: 17536765
Twiner MJ, Fire S, Schwacke L, Davidson L, Wang Z, Morton S, Roth S, Balmer B, Rowles TK, Wells RS (2011) Concurrent exposure of bottlenose dolphins (Tursiops truncatus) to multiple algal toxins in Sarasota Bay, Florida, USA. PLoS ONE 6:e17394. https://doi.org/10.1371/journal.pone.0017394
doi: 10.1371/journal.pone.0017394
pubmed: 21423740
pmcid: 3053359
Uggla A, Nilsson LA (1987) Evaluation of a solid-phase immunoassay (DIG-ELISA) for the serodiagnosis of ovine toxoplasmosis. Vet Immunol Immunopathol 14:309–318. https://doi.org/10.1016/0165-2427(87)90034-1
doi: 10.1016/0165-2427(87)90034-1
pubmed: 3111075
Umeakuana PU, Gibson W, Ezeokonkwo RC, Anene BM (2019) Identification of Trypanosoma brucei gambiense in naturally infected dogs in Nigeria. Parasit Vectors 12:420. https://doi.org/10.1186/s13071-019-3680-8
doi: 10.1186/s13071-019-3680-8
pubmed: 31455430
pmcid: 6712790
Uttenthal A, Braae U, Ngowi H, Rasmussen T, Nielsen J, Johansen M (2013) ASFV in Tanzania: Asymptomatic pigs harbor virus of molecular similarity to Georgia 2007. Vet Microbiol 165:173–6. https://doi.org/10.1016/j.vetmic.2013.01.003
doi: 10.1016/j.vetmic.2013.01.003
pubmed: 23398669
van den Hurk AF, Hall-Mendelin S, Townsend M, Kurucz N, Edwards J, Ehlers G, Rodwell C, Moore FA, McMahon JL, Northill JA, Simmons RJ, Cortis G, Melville L, Whelan PI, Ritchie SA (2014) Applications of a sugar-based surveillance system to track arboviruses in wild mosquito populations. Vector Borne Zoonotic Dis 14:66–73. https://doi.org/10.1089/vbz.2013.1373
doi: 10.1089/vbz.2013.1373
pubmed: 24359415
Velghe S, Delahaye L, Stove CP (2019) Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal 163:188–196. https://doi.org/10.1016/j.jpba.2018.10.010
doi: 10.1016/j.jpba.2018.10.010
pubmed: 30317075
Venkatesh P, Gopal D (2018) Rapid DNA extraction from dried milk spots: application in non-invasive detection of the A1/A2 variants of beta casein in cow. Proc Natl Acad Sci India Sect B Biol Sci 88:525–529. https://doi.org/10.1007/s40011-016-0781-4
doi: 10.1007/s40011-016-0781-4
Ventura RM, Paiva F, Silva RA, Takeda GF, Buck GA, Teixeira MM (2001) Trypanosoma vivax: characterization of the spliced-leader gene of a Brazilian stock and species-specific detection by PCR amplification of an intergenic spacer sequence. Exp Parasitol 99:37–48. https://doi.org/10.1006/expr.2001.4641
doi: 10.1006/expr.2001.4641
pubmed: 11708832
Ventura RM, Takeda GF, Silva RAMS, Nunes VLB, Buck GA, Teixeira MMG (2002) Genetic relatedness among Trypanosoma evansi stocks by random amplification of polymorphic DNA and evaluation of a synapomorphic DNA fragment for species-specific diagnosis. Int J Parasitol 32:53–63. https://doi.org/10.1016/s0020-7519(01)00314-9
doi: 10.1016/s0020-7519(01)00314-9
pubmed: 11796122
Viettri M, Herrera L, Aguilar CM, Morocoima A, Reyes J, Lares M, Lozano-Arias D, García-Alzate R, Chacón T, Feliciangeli MD, Ferrer E (2018) Molecular diagnosis of Trypanosoma cruzi/Leishmania spp. coinfection in domestic, peridomestic and wild mammals of Venezuelan co-endemic areas. Vet Parasitol Reg Stud Reports 14:123–130. https://doi.org/10.1016/j.vprsr.2018.10.002
doi: 10.1016/j.vprsr.2018.10.002
pubmed: 31014717
Vilček Š, Strojny L, Ďurkovi B, Rossmanith W, Paton D (2001) Storage of bovine viral diarrhoea virus samples on filter paper and detection of viral RNA by a RT-PCR method. J Virol Methods 92:19–22. https://doi.org/10.1016/S0166-0934(00)00258-5
doi: 10.1016/S0166-0934(00)00258-5
pubmed: 11164914
Villena FE, Gomez-Puerta LA, Jhonston EJ, Del Alcazar OM, Maguiña JL, Albujar C, Laguna-Torres VA, Recuenco SE, Ballard S-B, Ampuero JS (2018) First Report of Trypanosoma cruzi Infection in Salivary Gland of Bats from the Peruvian Amazon. Am J Trop Med Hyg 99:723–728. https://doi.org/10.4269/ajtmh.17-0816
doi: 10.4269/ajtmh.17-0816
pubmed: 30014825
pmcid: 6169177
Vitouley HS, Mungube EO, Allegye-Cudjoe E, Diall O, Bocoum Z, Diarra B, Randolph TF, Bauer B, Clausen P-H, Geysen D, Sidibe I, Bengaly Z, Van den Bossche P, Delespaux V (2011) Improved PCR-RFLP for the detection of diminazene resistance in Trypanosoma congolense under field conditions using filter papers for sample storage. PLoS Negl Trop Dis 5:e1223. https://doi.org/10.1371/journal.pntd.0001223
doi: 10.1371/journal.pntd.0001223
pubmed: 21814586
pmcid: 3144178
Wacharapluesadee S, Phumesin P, Lumlertdaecha B, Hemachudha T (2003) Diagnosis of rabies by use of brain tissue dried on filter paper. Clin. Infect. Dis. 36:674–675. https://doi.org/10.1080/03079457.2020.1837343
doi: 10.1080/03079457.2020.1837343
pubmed: 12594654
Wang C-YJ, Giambrone JJ, Smith BF (2002) Detection of duck hepatitis B virus DNA on filter paper by PCR and SYBR green dye-based quantitative PCR. J Clin Microbiol 40:2584–2590. https://doi.org/10.1128/JCM.40.7.2584-2590.2002
doi: 10.1128/JCM.40.7.2584-2590.2002
pubmed: 12089280
pmcid: 120600
Wang J, Yiu B, Obermeyer J, Filipe CDM, Brennan JD, Pelton R (2012) Effects of temperature and relative humidity on the stability of paper-immobilized antibodies. Biomacromol 13:559–564. https://doi.org/10.1021/bm2017405
doi: 10.1021/bm2017405
Wannaratana S, Thontiravong A, Pakpinyo S (2021) Comparison of three filter paper-based devices for safety and stability of viral sample collection in poultry. Avian Pathol 50:78–84. https://doi.org/10.1080/03079457.2020.1837343
doi: 10.1080/03079457.2020.1837343
pubmed: 33059461
Wasniewski M, Barrat J, Combes B, Guiot AL, Cliquet F (2014) Use of filter paper blood samples for rabies antibody detection in foxes and raccoon dogs. J Virol Methods 204:11–16. https://doi.org/10.1016/j.jviromet.2014.04.005
doi: 10.1016/j.jviromet.2014.04.005
pubmed: 24731929
Wipf NC, Guidi V, Tonolla M, Ruinelli M, Müller P, Engler O (2019) Evaluation of honey-baited FTA cards in combination with different mosquito traps in an area of low arbovirus prevalence. Parasit Vectors 12:554. https://doi.org/10.1186/s13071-019-3798-8
doi: 10.1186/s13071-019-3798-8
pubmed: 31753035
pmcid: 6873520
Wolff KL, Hudson BW (1974) Paper-strip blood-sampling technique for the detection of antibody to the plague organism Yersinia pestis. Appl Microbiol 28:323–325. https://doi.org/10.1128/am.28.2.323-325.1974
doi: 10.1128/am.28.2.323-325.1974
pubmed: 4853529
pmcid: 186711
Wood J, Minter LJ, Stoskopf MK, Bibus D, Ange D, Tollefson TN, Fellner V, Ange-van Heugten K (2021a) Investigation of dried blood spot cards for fatty acid analysis using porcine blood. Vet Med Int 2021:6624751. https://doi.org/10.1155/2021/6624751
doi: 10.1155/2021/6624751
pubmed: 34497707
pmcid: 8419488
Wood J, Minter LJ, Bibus D, Stoskop MK, Fellner V, Ange-van Heugten K (2021b) Comparison of African savanna elephant (Loxodonta africana) fatty acid profiles in whole blood, whole blood dried on blood spot cards, serum, and plasma. PeerJ 9:e12650. https://doi.org/10.7717/peerj.12650
doi: 10.7717/peerj.12650
pubmed: 35003934
pmcid: 8679954
Wood J, Minter LJ, Tollefson TN, Bissell H, Bibus D, Ange-van Heugten K (2021c) Implications of nutritional management on fatty acid profiles of southern white rhinoceroses (Ceratotherium simum simum) housed at Two zoological institutions. Animals 11(11):3063. https://doi.org/10.3390/ani11113063
doi: 10.3390/ani11113063
pubmed: 34827795
pmcid: 8614272
Wood J, Minter LJ, Bibus D, Tollefson TN, Ange-van Heugten K (2022) Assessment of the effects of storage temperature on fatty acid analysis using dried blood spot cards from managed southern white rhinoceroses (Ceratotherium simum simum): implications for field collection and nutritional care. PeerJ 10:e12896. https://doi.org/10.7717/peerj.12896
doi: 10.7717/peerj.12896
pubmed: 35186484
pmcid: 8852271
Worku K, Kechero Y, Janssens GPJ (2021) Measuring seasonal and agro-ecological effects on nutritional status in tropical ranging dairy cows. J Dairy Sci 104:4341–4349. https://doi.org/10.3168/jds.2020-18995
doi: 10.3168/jds.2020-18995
pubmed: 33551156
Wu J, Li Y, Hu S, Zhou J (2008) Development of a Rapid PCR Test for identification of Streptococcus agalactiae in milk samples collected on filter paper disks. Asian-Australasian J Anim Sci 21:124–130. https://doi.org/10.5713/ajas.2008.70076
doi: 10.5713/ajas.2008.70076
Yamamoto K, Chomel BB, Lowenstine LJ, Kikuchi Y, Phillips LG, Barr BC, Swift PK, Jones KR, Riley SP, Kasten RW, Foley JE, Pedersen NC (1998) Bartonella henselae antibody prevalence in free-ranging and captive wild felids from California. J Wildl Dis 34:56–63. https://doi.org/10.7589/0090-3558-34.1.56
doi: 10.7589/0090-3558-34.1.56
pubmed: 9476226
Yee EYS, Zainuddin ZZ, Ismail A, Yap CK, Tan SG (2013) Identification of hybrids of painted and milky storks using FTA card-collected blood, molecular markers, and morphologies. Biochem Genet 51:789–799. https://doi.org/10.1007/s10528-013-9607-8
doi: 10.1007/s10528-013-9607-8
pubmed: 23846110
Yoon K-J, Cho Y, Kim W, Pittman JS, Brinkman M, Winton C (2010) Experimental and field trial of TEGO
Young ER, Purnell RE (1980) Evaluation of dried blood samples as a source of antibody in the micro ELISA test for Babesia divergens. Vet Rec 106:60–61. https://doi.org/10.1136/vr.106.3.60
doi: 10.1136/vr.106.3.60
pubmed: 6987802
Ytrehus B, Rocchi M, Brandsegg H, Turnbull D, Miller A, Pedersen HC, Kålås JA, Nilsen EB (2021) Louping-ill virus serosurvey of Willow Ptarmigan (Lagopus lagopus lagopus) in Norway. J Wildl Dis 57:282–291. https://doi.org/10.7589/JWD-D-20-00068
doi: 10.7589/JWD-D-20-00068
pubmed: 33822153
Yu C, Zimmerman C, Stone R, Engle RE, Elkins W, Nardone GA, Emerson SU, Purcell RH (2007) Using improved technology for filter paper-based blood collection to survey wild Sika deer for antibodies to hepatitis E virus. J Virol Methods 142:143–150. https://doi.org/10.1016/j.jviromet.2007.01.016
doi: 10.1016/j.jviromet.2007.01.016
pubmed: 17336401
pmcid: 2770239