Human placental extract activates a wide array of gene expressions related to skin functions.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 06 2022
30 06 2022
Historique:
received:
30
01
2022
accepted:
21
06
2022
entrez:
30
6
2022
pubmed:
1
7
2022
medline:
6
7
2022
Statut:
epublish
Résumé
As skin aging is one of the most common dermatological concerns in recent years, scientific research has promoted treatment strategies aimed at preventing or reversing skin aging. Breakdown of the extracellular matrix (ECM), such as collagen and elastin fibers, in the skin results in decreased skin elasticity and tension. Cutaneous cells, especially fibroblasts in the dermis layer of the skin, mainly produce ECM proteins. Although clinical studies have demonstrated that placental extract (PE) has positive effects on skin health, the molecular mechanisms by which PE acts against skin aging are still largely unknown. In this study, we performed RNA-sequence analysis to investigate whether human PE (HPE) alters ECM-related gene expression in normal human dermal fibroblast (NHDF) cells. Gene ontology analysis showed that genes related to extracellular matrix/structure organization, such as COL1A1, COL5A3, ELN, and HAS2 were highly enriched, and most of these genes were upregulated. We further confirmed that the HPE increased the type I collagen, proteoglycan versican, elastin, and hyaluronan levels in NHDF cells. Our results demonstrate that HPE activates global ECM-related gene expression in NHDF cells, which accounts for the clinical evidence that the HPE affects skin aging.
Identifiants
pubmed: 35773304
doi: 10.1038/s41598-022-15270-y
pii: 10.1038/s41598-022-15270-y
pmc: PMC9246867
doi:
Substances chimiques
Placental Extracts
0
Versicans
126968-45-4
Elastin
9007-58-3
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11031Informations de copyright
© 2022. The Author(s).
Références
Krämer, U. & Schikowski, T. Recent Demographic Changes and Consequences for Dermatology. In Skin Aging (eds Gilchrest, B. A. & Krutmann, J.) (Springer-Verlag, 2006).
Farage, M. A., Miller, K. W., Elsner, P. & Maibach, H. I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci. 30, 87–95 (2008).
pubmed: 18377617
doi: 10.1111/j.1468-2494.2007.00415.x
Mesa-Arango, A. C., Flórez-Muñoz, S. V. & Sanclemente, G. Mechanisms of skin aging. Iatreia 30, 160–170 (2017).
doi: 10.17533/udea.iatreia.v30n2a05
Yagi, M. & Yonei, Y. Glycative stress and skin aging. Glycative Stress Res. 5, 50–54 (2018).
Bocheva, G., Slominski, R. M. & Slominski, A. T. Neuroendocrine aspects of skin aging. Int. J. Mol. Sci. 20, 2798 (2019).
pmcid: 6600459
doi: 10.3390/ijms20112798
Melzer, D., Pilling, L. C. & Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 21, 88–101 (2020).
pubmed: 31690828
doi: 10.1038/s41576-019-0183-6
Slominski, A. T. et al. Sensing the environment: Regulation of local and global homeostasis by the skin neuroendocrine system Andrzej. Adv. Anat. Embryol. Cell Biol. 212, 1–6 (2012).
doi: 10.1007/978-3-642-19683-6_1
Nejati, R., Kovacic, D. & Slominski, A. Neuro-immune-endocrine functions of the skin: An overview. Expert Rev. Dermatol. 8, 581–583 (2013).
pubmed: 24587812
pmcid: 3938165
doi: 10.1586/17469872.2013.856690
Slominski, A. & Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 21, 457–487 (2000).
pubmed: 11041445
Bocheva, G., Slominski, R. M. & Slominski, A. T. The impact of vitamin D on skin aging. Int. J. Mol. Sci. 22, 9097 (2021).
pubmed: 34445803
pmcid: 8396468
doi: 10.3390/ijms22169097
Bocheva, G. et al. Protective role of melatonin and its metabolites in skin aging. Int. J. Mol. Sci. 23, 1238 (2022).
pubmed: 35163162
pmcid: 8835651
doi: 10.3390/ijms23031238
Naylor, E. C., Watson, R. E. B. & Sherratt, M. J. Molecular aspects of skin ageing. Maturitas 69, 249–256 (2011).
pubmed: 21612880
doi: 10.1016/j.maturitas.2011.04.011
Strnadova, K. et al. Skin aging: The dermal perspective. Clin. Dermatol. 37, 326–335 (2019).
pubmed: 31345320
doi: 10.1016/j.clindermatol.2019.04.005
Ressler, S. et al. p16 INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5, 379–389 (2006).
pubmed: 16911562
doi: 10.1111/j.1474-9726.2006.00231.x
Waaijer, M. E. C. et al. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11, 722–725 (2012).
pubmed: 22612594
doi: 10.1111/j.1474-9726.2012.00837.x
Kim, H. et al. Attenuation of intrinsic ageing of the skin via elimination of senescent dermal fibroblasts with senolytic drugs. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/jdv.18051 (2022).
doi: 10.1111/jdv.18051
pubmed: 35442543
Tigges, J. et al. The hallmarks of fibroblast ageing. Mech. Ageing Dev. 138, 26–44 (2014).
pubmed: 24686308
doi: 10.1016/j.mad.2014.03.004
Mukherjee, P. K., Maity, N., Nema, N. K. & Sarkar, B. K. Bioactive compounds from natural resources against skin aging. Phytomedicine 19, 64–73 (2011).
pubmed: 22115797
doi: 10.1016/j.phymed.2011.10.003
Sekar, M. Natural Products in Aging Skin. Aging (Elsevier Inc., 2020).
Zasada, M. & Budzisz, E. Retinoids: Active molecules influencing skin structure formation in cosmetic and dermatological treatments. Postep. Dermatologii i Alergol. 36, 392–397 (2019).
doi: 10.5114/ada.2019.87443
Vollmer, D. L., West, V. A. & Lephart, E. D. Enhancing skin health: By oral administration of natural compounds and minerals with implications to the dermal microbiome. Int. J. Mol. Sci. 19, 5–8 (2018).
doi: 10.3390/ijms19103059
Yoshikawa, C., Koike, K., Takano, F., Sugiur, K. & Suzuki, N. Efficacy of porcine placental extract on wrinkle widths below the eye in climacteric women. Climacteric 17, 370–376 (2014).
pubmed: 24313619
doi: 10.3109/13697137.2013.871695
Nagae, M. et al. Effect of porcine placenta extract supplement on skin condition in healthy adult women: A randomized, double-blind placebo-controlled study. Nutrients 12, 1–12 (2020).
doi: 10.3390/nu12061671
Tiwary, S. K. et al. Effect of placental-extract gel and cream on non-healing wounds. J. Wound Care 15, 325–328 (2006).
pubmed: 16869202
doi: 10.12968/jowc.2006.15.7.26937
Wu, J. et al. Laennec protects murine from concanavalin A-induced liver injury through inhibition of inflammatory reactions and hepatocyte apoptosis. Biol. Pharm. Bull. 31, 2040–2044 (2008).
pubmed: 18981570
doi: 10.1248/bpb.31.2040
Kim, Y. S. et al. Preventive and therapeutic potential of placental extract in contact hypersensitivity. Int. Immunopharmacol. 10, 1177–1184 (2010).
pubmed: 20619383
pmcid: 2949509
doi: 10.1016/j.intimp.2010.06.024
Kong, M. & Park, S. B. Effect of human placental extract on health status in elderly koreans. Evidence-based Complement. Altern. Med. 2012, 1–5 (2012).
Choi, J. Y. et al. Efficacy and safety of human placental extract for alcoholic and nonalcoholic steatohepatitis: An open-label, randomized, comparative study. Biol. Pharm. Bull. 37, b13-00979 (2014).
doi: 10.1248/bpb.b13-00979
Karasawa, Y. et al. Clinical treatment test of Melsmon on menopausal disorder. Medicat. Treat. 9, 1–10 (1981).
Kong, M. H. et al. Effect of human placental extract on menopausal symptoms, fatigue, and risk factors for cardiovascular disease in middle-aged Korean women. Menopause 15, 296–303 (2008).
pubmed: 18090035
doi: 10.1097/gme.0b013e3181405b74
Lee, Y.-K., Chung, H. H. & Kang, S.-B. Efficacy and safety of human placenta extract in alleviating climacteric symptoms: Prospective, randomized, double-blind, placebo-controlled trial. J. Obstet. Gynaecol. Res. 35, 1096–1101 (2009).
pubmed: 20144174
doi: 10.1111/j.1447-0756.2009.01066.x
Yoshikawa, C. et al. Effect of porcine placental extract on collagen production in human skin fibroblasts in vitro. Gynecol. Obstet. https://doi.org/10.4172/2161-0932.1000186 (2013).
doi: 10.4172/2161-0932.1000186
Imamura, Y., Honda, Y., Masuno, K., Nakamura, H. & Wang, P. L. Effects of placental extract on cell proliferation, type I collagen production, and ALP secretion in human osteosarcoma cell line Saos-2. J. Hard Tissue Biol. 26, 157–160 (2017).
doi: 10.2485/jhtb.26.157
Akagi, H. et al. Evaluation of collagen type-1 production and anti-inflammatory activities of human placental extracts in human gingival fibroblasts. J. Hard Tissue Biol. 25, 277–281 (2016).
doi: 10.2485/jhtb.25.277
Pfisterer, K., Shaw, L. E., Symmank, D. & Weninger, W. The extracellular matrix in skin inflammation and infection. Front. Cell Dev. Biol. 9, 1578 (2021).
doi: 10.3389/fcell.2021.682414
Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, 1–19 (2011).
doi: 10.1101/cshperspect.a004978
Midwood, K. S. & Schwarzbauer, J. E. Elastic fibers: Building bridges between cells and their matrix. Curr. Biol. 12, 279–281 (2002).
doi: 10.1016/S0960-9822(02)00800-X
Katsuta, Y. et al. Fibulin-5 accelerates elastic fibre assembly in human skin fibroblasts. Exp. Dermatol. 17, 837–842 (2008).
pubmed: 18341572
doi: 10.1111/j.1600-0625.2008.00709.x
Iozzo, R. V. Matrix proteoglycans: From molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998).
pubmed: 9759499
doi: 10.1146/annurev.biochem.67.1.609
Wight, T. N. Versican: A versatile extracellular matrix proteoglycan in cell biology. Curr. Opin. Cell Biol. 14, 617–623 (2002).
pubmed: 12231358
doi: 10.1016/S0955-0674(02)00375-7
Ricciardelli, C., Sakko, A. J., Ween, M. P., Russell, D. L. & Horsfall, D. J. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev. 28, 233–245 (2009).
pubmed: 19160015
doi: 10.1007/s10555-009-9182-y
Theocharis, A. D. Versican in health and disease. Connect. Tissue Res. 49, 230–234 (2008).
pubmed: 18661349
doi: 10.1080/03008200802147571
Gonzalez Rico, J. et al. The role of versican in the skin ECM and its interaction with hyaluronic acid. Biomecánica https://doi.org/10.5821/sibb.27.1.9279 (2019).
doi: 10.5821/sibb.27.1.9279
Juhl, P. et al. Dermal fibroblasts have different extracellular matrix profiles induced by TGF-β, PDGF and IL-6 in a model for skin fibrosis. Sci. Rep. 10, 17300 (2020).
pubmed: 33057073
pmcid: 7560847
doi: 10.1038/s41598-020-74179-6
Gurujeyalakshmi, G. & Giri, S. N. Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: Downregulation of TGF-β and procollagen I and III gene expression. Exp. Lung Res. 21, 791–808 (1995).
pubmed: 8556994
doi: 10.3109/01902149509050842
Hansen, N. U. B. et al. Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor. Respir. Res. 17, 76 (2016).
pubmed: 27411390
pmcid: 4942917
doi: 10.1186/s12931-016-0394-8
Park, S. Y., Phark, S., Lee, M., Lim, J. Y. & Sul, D. Anti-oxidative and anti-inflammatory activities of placental extracts in benzo[a]pyrene-exposed rats. Placenta 31, 873–879 (2010).
pubmed: 20708262
doi: 10.1016/j.placenta.2010.07.010
Ahsan, S. & Drăghici, S. Identifying Significantly Impacted Pathways and Putative Mechanisms with iPathwayGuide. Curr. Protoc. Bioinforma. 57, 7.15.1-7.15.30 (2017).
doi: 10.1002/cpbi.24