Regulation and dysregulation of hair regeneration: aiming for clinical application.
Alopecia areata
Androgenetic alopecia
Hair follicle
Regeneration
Stem cells
Journal
Cell regeneration (London, England)
ISSN: 2045-9769
Titre abrégé: Cell Regen
Pays: China
ID NLM: 101627311
Informations de publication
Date de publication:
01 Jul 2022
01 Jul 2022
Historique:
received:
13
11
2021
accepted:
05
05
2022
entrez:
30
6
2022
pubmed:
1
7
2022
medline:
1
7
2022
Statut:
epublish
Résumé
Hair growth and regeneration represents a remarkable example of stem cell function. Recent progress emphasizes the micro- and macro- environment that controls the regeneration process. There is a shift from a stem cell-centered view toward the various layers of regulatory mechanisms that control hair regeneration, which include local growth factors, immune and neuroendocrine signals, and dietary and environmental factors. This is better suited for clinical application in multiple forms of hair disorders: in male pattern hair loss, the stem cells are largely preserved, but androgen signaling diminishes hair growth; in alopecia areata, an immune attack is targeted toward the growing hair follicle without abrogating its regeneration capability. Genome-wide association studies further revealed the genetic bases of these disorders, although the precise pathological mechanisms of the identified loci remain largely unknown. By analyzing the dysregulation of hair regeneration under pathological conditions, we can better address the complex interactions among stem cells, the differentiated progeny, and mesenchymal components, and highlight the critical role of macroenvironment adjustment that is essential for hair growth and regeneration. The poly-genetic origin of these disorders makes the study of hair regeneration an interesting and challenging field.
Identifiants
pubmed: 35773427
doi: 10.1186/s13619-022-00122-x
pii: 10.1186/s13619-022-00122-x
pmc: PMC9247129
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
22Subventions
Organisme : National Natural Science Foundation of China
ID : 31871468
Informations de copyright
© 2022. The Author(s).
Références
Ahmed A, Almohanna H, Griggs J, Tosti A. Genetic hair disorders: a review. Dermatol Ther (Heidelb). 2019;9:421–48.
doi: 10.1007/s13555-019-0313-2
Ali N, et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell. 2017;169:1119–29 e11.
pubmed: 28552347
pmcid: 5504703
doi: 10.1016/j.cell.2017.05.002
Bertolini M, McElwee K, Gilhar A, Bulfone-Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol. 2020;29:703–25.
pubmed: 32682334
doi: 10.1111/exd.14155
Betz RC, et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun. 2015;6:5966.
pubmed: 25608926
doi: 10.1038/ncomms6966
Castellana D, Paus R, Perez-Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol. 2014;12:e1002002.
pubmed: 25536657
pmcid: 4275176
doi: 10.1371/journal.pbio.1002002
Ceruti JM, Oppenheimer FM, Leirós GJ, Balañá ME. Androgens downregulate BMP2 impairing the inductive role of dermal papilla cells on hair follicle stem cells differentiation. Mol Cell Endocrinol. 2021;520:111096.
pubmed: 33259912
doi: 10.1016/j.mce.2020.111096
Chase HB. Greying induced by x-rays in the mouse. Genetics. 1946;31:213.
pubmed: 21021048
Chen CC, Chuong CM. Multi-layered environmental regulation on the homeostasis of stem cells: the saga of hair growth and alopecia. J Dermatol Sci. 2012;66:3–11.
pubmed: 22391240
pmcid: 3684257
doi: 10.1016/j.jdermsci.2012.02.007
Chen CC, Plikus MV, Tang PC, Widelitz RB, Chuong CM. The Modulatable stem cell niche: tissue interactions during hair and feather follicle regeneration. J Mol Biol. 2016;428:1423–40.
pubmed: 26196442
doi: 10.1016/j.jmb.2015.07.009
Chen CC, et al. Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell. 2015;161:277–90.
pubmed: 25860610
pmcid: 4393531
doi: 10.1016/j.cell.2015.02.016
Choi S, et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature. 2021;592:428–32.
pubmed: 33790465
pmcid: 8923613
doi: 10.1038/s41586-021-03417-2
Coolidge WD. High voltage cathode rays outside the generating tube. Science. 1925;62:441.
pubmed: 17732229
doi: 10.1126/science.62.1611.441
Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61:1329–37.
pubmed: 2364430
doi: 10.1016/0092-8674(90)90696-C
Deng Z, et al. Androgen receptor-mediated paracrine signaling induces regression of blood vessels in the dermal papilla in androgenetic alopecia. J Invest Dermatol. 2022;S0022-202X(22)00009–4. https://doi.org/10.1016/j.jid.2022.01.003 . Online ahead of print.
Ding Q, et al. Early-onset androgenetic alopecia in China: a descriptive study of a large outpatient cohort. J Int Med Res. 2020;48:300060519897190.
pubmed: 32188323
Driskell RR, Jahoda CA, Chuong CM, Watt FM, Horsley V. Defining dermal adipose tissue. Exp Dermatol. 2014;23:629–31.
pubmed: 24841073
pmcid: 4282701
doi: 10.1111/exd.12450
Egger A, Tomic-Canic M, Tosti A. Advances in stem cell-based therapy for hair loss. CellR4 Repair Replace Regen Reprogram. 2020;8:e2894.
pubmed: 32968692
pmcid: 7508456
Festa E, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146:761–71.
pubmed: 21884937
pmcid: 3298746
doi: 10.1016/j.cell.2011.07.019
Garza LA, et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J Clin Invest. 2011;121:613–22.
pubmed: 21206086
pmcid: 3026732
doi: 10.1172/JCI44478
Garza LA, et al. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci Transl Med. 2012;4:126ra34.
pubmed: 22440736
pmcid: 3319975
doi: 10.1126/scitranslmed.3003122
Gilhar A, Etzioni A, Paus R. Alopecia areata. N Engl J Med. 2012;366:1515–25.
pubmed: 22512484
doi: 10.1056/NEJMra1103442
Gilhar A, Keren A, Paus R. JAK inhibitors and alopecia areata. Lancet. 2019;393:318–9.
pubmed: 30696569
doi: 10.1016/S0140-6736(18)32987-8
Gonzales KAU, Fuchs E. Skin and its regenerative powers: an Alliance between stem cells and their niche. Dev Cell. 2017;43:387–401.
pubmed: 29161590
doi: 10.1016/j.devcel.2017.10.001
Greco V, et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009;4:155–69.
pubmed: 19200804
pmcid: 2668200
doi: 10.1016/j.stem.2008.12.009
Guiu J, et al. Tracing the origin of adult intestinal stem cells. Nature. 2019;570:107–11.
pubmed: 31092921
pmcid: 6986928
doi: 10.1038/s41586-019-1212-5
Gur-Cohen S, et al. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science. 2019;366:1218–25.
pubmed: 31672914
pmcid: 6996853
doi: 10.1126/science.aay4509
Hagenaars SP, et al. Genetic prediction of male pattern baldness. PLoS Genet. 2017;13:e1006594.
pubmed: 28196072
pmcid: 5308812
doi: 10.1371/journal.pgen.1006594
Hamilton JB. Patterned loss of hair in man; types and incidence. Ann N Y Acad Sci. 1951;53:708–28.
pubmed: 14819896
doi: 10.1111/j.1749-6632.1951.tb31971.x
Hardman JA, et al. Human perifollicular macrophages undergo apoptosis, express Wnt ligands, and switch their polarization during catagen. J Invest Dermatol. 2019;139:2543–6.
pubmed: 31233759
doi: 10.1016/j.jid.2019.04.026
Hardy MH. The secret life of the hair follicle. Trends Genet. 1992;8:55–61.
pubmed: 1566372
doi: 10.1016/0168-9525(92)90350-D
Harshuk-Shabso S, Dressler H, Niehrs C, Aamar E, Enshell-Seijffers D. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nat Commun. 2020;11:5114.
pubmed: 33037205
pmcid: 7547083
doi: 10.1038/s41467-020-18643-x
Haslam IS, et al. Inhibition of Shh signaling through MAPK activation controls chemotherapy-induced alopecia. J Invest Dermatol. 2021;141:334–44.
pubmed: 32682910
doi: 10.1016/j.jid.2020.05.118
Hébert JM, Rosenquist T, Götz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell. 1994;78:1017–25.
pubmed: 7923352
doi: 10.1016/0092-8674(94)90276-3
Heilmann-Heimbach S, Hochfeld LM, Paus R, Nothen MM. Hunting the genes in male-pattern alopecia: how important are they, how close are we and what will they tell us? Exp Dermatol. 2016;25:251–7.
pubmed: 26843402
doi: 10.1111/exd.12965
Heilmann-Heimbach S, et al. Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nat Commun. 2017;8:14694.
pubmed: 28272467
pmcid: 5344973
doi: 10.1038/ncomms14694
Huang WY, et al. Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy. Cancer Res. 2017;77:6083–96.
pubmed: 28939680
pmcid: 5756475
doi: 10.1158/0008-5472.CAN-17-0667
Inomata K, et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137:1088–99.
pubmed: 19524511
doi: 10.1016/j.cell.2009.03.037
Inui S, Itami S. Androgen actions on the human hair follicle: perspectives. Exp Dermatol. 2013;22:168–71.
pubmed: 23016593
doi: 10.1111/exd.12024
Ito M, Kizawa K, Hamada K, Cotsarelis G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation. 2004;72:548–57.
pubmed: 15617565
doi: 10.1111/j.1432-0436.2004.07209008.x
Ito M, Kizawa K, Toyoda M, Morohashi M. Label-retaining cells in the bulge region are directed to cell death after plucking, followed by healing from the surviving hair germ. J Invest Dermatol. 2002;119:1310–6.
pubmed: 12485433
doi: 10.1046/j.1523-1747.2002.19644.x
Jahoda CA. Cellular and developmental aspects of androgenetic alopecia. Exp Dermatol. 1998;7:235–48.
pubmed: 9832312
Jiang TX, Harn HI, Ou KL, Lei M, Chuong CM. Comparative regenerative biology of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin. Exp Dermatol. 2019;28:442–9.
pubmed: 30734959
pmcid: 6488381
doi: 10.1111/exd.13899
Koester J, et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat Cell Biol. 2021;23:771–81.
pubmed: 34239060
doi: 10.1038/s41556-021-00705-x
Kretzschmar K, Cottle DL, Schweiger PJ, Watt FM. The androgen receptor antagonizes Wnt/beta-catenin signaling in epidermal stem cells. J Invest Dermatol. 2015;135:2753–63.
pubmed: 26121213
pmcid: 4641324
doi: 10.1038/jid.2015.242
Leirós GJ, Ceruti JM, Castellanos ML, Kusinsky AG, Balañá ME. Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia. Mol Cell Endocrinol. 2017;439:26–34.
pubmed: 27769713
doi: 10.1016/j.mce.2016.10.018
Li J, et al. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1. J Invest Dermatol. 2012b;132:2681–90.
pubmed: 22763785
pmcid: 3465630
doi: 10.1038/jid.2012.206
Li KN, et al. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. Elife. 2019;8:e45977.
pubmed: 31343406
pmcid: 6684267
doi: 10.7554/eLife.45977
Li R, et al. Six novel susceptibility loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet. 2012a;8:e1002746.
pubmed: 22693459
pmcid: 3364959
doi: 10.1371/journal.pgen.1002746
Liu Y, Xiong X, Chen YG. Dedifferentiation: the return road to repair the intestinal epithelium. Cell Regen. 2020;9:2.
pubmed: 32588148
pmcid: 7306829
doi: 10.1186/s13619-020-00048-2
Lolli F, et al. Androgenetic alopecia: a review. Endocrine. 2017;57:9–17.
pubmed: 28349362
doi: 10.1007/s12020-017-1280-y
Malkinson FD, Griem ML, Morse PH. Colchicine synergism of mouse hair root changes produced by x-ray irradiation. J Invest Dermatol. 1961;37:337–44.
pubmed: 14468947
doi: 10.1038/jid.1961.129
Malkinson FD, Keane JT. Radiobiology of the skin: review of some effects on epidermis and hair. J Invest Dermatol. 1981;77:133–8.
pubmed: 7252246
doi: 10.1111/1523-1747.ep12479347
Mecklenburg L, et al. Active hair growth (anagen) is associated with angiogenesis. J Invest Dermatol. 2000;114:909–16.
pubmed: 10771470
doi: 10.1046/j.1523-1747.2000.00954.x
Moreau JM, Gouirand V, Rosenblum MD. T-cell adhesion in healthy and inflamed skin. JID Innov. 2021;1:100014.
pubmed: 35024681
pmcid: 8669513
doi: 10.1016/j.xjidi.2021.100014
Morinaga H, et al. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature. 2021;595:266–71.
pubmed: 34163066
doi: 10.1038/s41586-021-03624-x
Murata K, et al. Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell. 2020;26:377–90.
pubmed: 32084390
pmcid: 7147146
doi: 10.1016/j.stem.2019.12.011
Naik S, Larsen SB, Cowley CJ, Fuchs E. Two to tango: dialog between immunity and stem cells in health and disease. Cell. 2018;175:908–20.
pubmed: 30388451
pmcid: 6294328
doi: 10.1016/j.cell.2018.08.071
Nicu C, et al. Dermal adipose tissue secretes HGF to promote human hair growth and pigmentation. J Invest Dermatol. 2021;141:1633–45.
pubmed: 33493531
doi: 10.1016/j.jid.2020.12.019
Oliver RF. Regeneration of dermal papillae in rat vibrissae. J Invest Dermatol. 1966;47:496–7.
pubmed: 5332411
doi: 10.1038/jid.1966.175
Oliver RF. Ectopic regeneration of whiskers in the hooded rat from implanted lengths of vibrissa follicle wall. J Embryol Exp Morpholog. 1967;17:27–34.
Panteleyev AA. Functional anatomy of the hair follicle: the secondary hair germ. Exp Dermatol. 2018;27:701–20.
pubmed: 29672929
doi: 10.1111/exd.13666
Paus R. The evolving pathogenesis of alopecia areata: major open questions. J Invest Dermatol Symp Proc. 2020;20:S6–10.
doi: 10.1016/j.jisp.2020.04.002
Paus R, Bulfone-Paus S, Bertolini M. Hair follicle immune privilege revisited: the key to alopecia areata management. J Invest Dermatol Symp Proc. 2018;19:S12–7.
doi: 10.1016/j.jisp.2017.10.014
Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341:491–7.
pubmed: 10441606
doi: 10.1056/NEJM199908123410706
Paus R, Handjiski B, Eichmüller S, Czarnetzki BM. Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine a, and modulation by dexamethasone. Am J Pathol. 1994;144:719–34.
pubmed: 8160773
pmcid: 1887229
Peña-Jimenez D, et al. Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo. EMBO J. 2019;38:e101688.
pubmed: 31475747
pmcid: 6769427
doi: 10.15252/embj.2019101688
Petukhova L, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466:113–7.
pubmed: 20596022
pmcid: 2921172
doi: 10.1038/nature09114
Petukhova L, et al. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy. Exp Dermatol. 2020;29:243–53.
pubmed: 31169925
doi: 10.1111/exd.13986
Pirastu N, et al. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nat Commun. 2017;8:1584.
pubmed: 29146897
pmcid: 5691155
doi: 10.1038/s41467-017-01490-8
Plikus MV, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008;451:340–4.
pubmed: 18202659
pmcid: 2696201
doi: 10.1038/nature06457
Plikus MV, et al. Self-organizing and stochastic behaviors during the regeneration of hair stem cells. Science. 2011;332:586–9.
pubmed: 21527712
pmcid: 3321266
doi: 10.1126/science.1201647
Potten CS. Radiation depigmentation of the mouse hair: effect of the hair growth cycle on the sensitivity. J Invest Dermatol. 1970;55:410–8.
pubmed: 5489081
doi: 10.1111/1523-1747.ep12260552
Pratt CH, King LE Jr, Messenger AG, Christiano AM, Sundberg JP. Alopecia areata. Nat Rev Dis Primers. 2017;3:17011.
pubmed: 28300084
pmcid: 5573125
doi: 10.1038/nrdp.2017.11
Qu Q, et al. Platelet-rich plasma for androgenic alopecia: a randomized, placebo-controlled, double-blind study and combined mice model experiment. J Cosmet Dermatol. 2021;20:3227–35.
pubmed: 33752252
doi: 10.1111/jocd.14089
Rahmani W, Sinha S, Biernaskie J. Immune modulation of hair follicle regeneration. NPJ Regen Med. 2020;5:9.
pubmed: 32411394
pmcid: 7214459
doi: 10.1038/s41536-020-0095-2
Rahmani W, et al. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell. 2014;31:543–58.
pubmed: 25465495
doi: 10.1016/j.devcel.2014.10.022
Randall VA. Androgens and hair growth. Dermatol Ther. 2008;21:314–28.
pubmed: 18844710
doi: 10.1111/j.1529-8019.2008.00214.x
Rochat A, Kobayashi K, Barrandon Y. Location of stem cells of human hair follicles by clonal analysis. Cell. 1994;76:1063–73.
pubmed: 8137423
doi: 10.1016/0092-8674(94)90383-2
Rognoni E, Watt FM. Skin cell heterogeneity in development, wound healing, and Cancer. Trends Cell Biol. 2018;28:709–22.
pubmed: 29807713
pmcid: 6098245
doi: 10.1016/j.tcb.2018.05.002
Rompolas P, Mesa KR, Greco V. Spatial organization within a niche as a determinant of stem-cell fate. Nature. 2013;502:513–8.
pubmed: 24097351
pmcid: 3895444
doi: 10.1038/nature12602
Rompolas P, et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature. 2012;487:496–9.
pubmed: 22763436
pmcid: 3772651
doi: 10.1038/nature11218
Schmidt B, Horsley V. Unravelling hair follicle-adipocyte communication. Exp Dermatol. 2012;21:827–30.
pubmed: 23163647
pmcid: 3507425
doi: 10.1111/exd.12001
Seifert AW, et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature. 2012;489:561–5.
pubmed: 23018966
pmcid: 3480082
doi: 10.1038/nature11499
Shapiro J, Ho A, Sukhdeo K, Yin L, Lo SK. Evaluation of platelet-rich plasma as a treatment for androgenetic alopecia: a randomized controlled trial. J Am Acad Dermatol. 2020;83:1298–303.
pubmed: 32653577
doi: 10.1016/j.jaad.2020.07.006
Shwartz Y, et al. Cell types promoting Goosebumps form a niche to regulate hair follicle stem cells. Cell. 2020;182:578–93.
pubmed: 32679029
pmcid: 7540726
doi: 10.1016/j.cell.2020.06.031
Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102:451–61.
pubmed: 10966107
doi: 10.1016/S0092-8674(00)00050-7
Tumbar T, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–63.
pubmed: 14671312
doi: 10.1126/science.1092436
Wang TL, et al. Prevalence of androgenetic alopecia in China: a community-based study in six cities. Br J Dermatol. 2010;162:843–7.
pubmed: 20105167
doi: 10.1111/j.1365-2133.2010.09640.x
Williams AW. A note on certain appearances of x-rayed hairs. Br J Dermatol. 1906;18:63–5.
Xiao Y, et al. Perivascular hair follicle stem cells associate with a venule annulus. J Invest Dermatol. 2013;133:2324–31.
pubmed: 23558405
pmcid: 3742722
doi: 10.1038/jid.2013.167
Xie Y, et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-alpha axis. Cell Stem Cell. 2022;29:70–85.
pubmed: 34624205
doi: 10.1016/j.stem.2021.09.009
Yang H, Adam RC, Ge Y, Hua ZL, Fuchs E. Epithelial-Mesenchymal Micro-niches govern stem cell lineage choices. Cell. 2017;169:483–96.
pubmed: 28413068
pmcid: 5510744
doi: 10.1016/j.cell.2017.03.038
Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest. 2001;107:409–17.
pubmed: 11181640
pmcid: 199257
doi: 10.1172/JCI11317
Yap CX, et al. Dissection of genetic variation and evidence for pleiotropy in male pattern baldness. Nat Commun. 2018;9:5407.
pubmed: 30573740
pmcid: 6302097
doi: 10.1038/s41467-018-07862-y
Yuan AR, Bian Q, Gao JQ. Current advances in stem cell-based therapies for hair regeneration. Eur J Pharmacol. 2020;881:173197.
pubmed: 32439260
doi: 10.1016/j.ejphar.2020.173197
Zhang B, et al. Hair follicles' transit-amplifying cells govern concurrent dermal adipocyte production through sonic hedgehog. Genes Dev. 2016;30:2325–38.
pubmed: 27807033
pmcid: 5110998
doi: 10.1101/gad.285429.116
Zhang B, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676–81.
pubmed: 31969699
pmcid: 7184936
doi: 10.1038/s41586-020-1935-3