Regulation and dysregulation of hair regeneration: aiming for clinical application.

Alopecia areata Androgenetic alopecia Hair follicle Regeneration Stem cells

Journal

Cell regeneration (London, England)
ISSN: 2045-9769
Titre abrégé: Cell Regen
Pays: China
ID NLM: 101627311

Informations de publication

Date de publication:
01 Jul 2022
Historique:
received: 13 11 2021
accepted: 05 05 2022
entrez: 30 6 2022
pubmed: 1 7 2022
medline: 1 7 2022
Statut: epublish

Résumé

Hair growth and regeneration represents a remarkable example of stem cell function. Recent progress emphasizes the micro- and macro- environment that controls the regeneration process. There is a shift from a stem cell-centered view toward the various layers of regulatory mechanisms that control hair regeneration, which include local growth factors, immune and neuroendocrine signals, and dietary and environmental factors. This is better suited for clinical application in multiple forms of hair disorders: in male pattern hair loss, the stem cells are largely preserved, but androgen signaling diminishes hair growth; in alopecia areata, an immune attack is targeted toward the growing hair follicle without abrogating its regeneration capability. Genome-wide association studies further revealed the genetic bases of these disorders, although the precise pathological mechanisms of the identified loci remain largely unknown. By analyzing the dysregulation of hair regeneration under pathological conditions, we can better address the complex interactions among stem cells, the differentiated progeny, and mesenchymal components, and highlight the critical role of macroenvironment adjustment that is essential for hair growth and regeneration. The poly-genetic origin of these disorders makes the study of hair regeneration an interesting and challenging field.

Identifiants

pubmed: 35773427
doi: 10.1186/s13619-022-00122-x
pii: 10.1186/s13619-022-00122-x
pmc: PMC9247129
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

22

Subventions

Organisme : National Natural Science Foundation of China
ID : 31871468

Informations de copyright

© 2022. The Author(s).

Références

Ahmed A, Almohanna H, Griggs J, Tosti A. Genetic hair disorders: a review. Dermatol Ther (Heidelb). 2019;9:421–48.
doi: 10.1007/s13555-019-0313-2
Ali N, et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell. 2017;169:1119–29 e11.
pubmed: 28552347 pmcid: 5504703 doi: 10.1016/j.cell.2017.05.002
Bertolini M, McElwee K, Gilhar A, Bulfone-Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol. 2020;29:703–25.
pubmed: 32682334 doi: 10.1111/exd.14155
Betz RC, et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun. 2015;6:5966.
pubmed: 25608926 doi: 10.1038/ncomms6966
Castellana D, Paus R, Perez-Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol. 2014;12:e1002002.
pubmed: 25536657 pmcid: 4275176 doi: 10.1371/journal.pbio.1002002
Ceruti JM, Oppenheimer FM, Leirós GJ, Balañá ME. Androgens downregulate BMP2 impairing the inductive role of dermal papilla cells on hair follicle stem cells differentiation. Mol Cell Endocrinol. 2021;520:111096.
pubmed: 33259912 doi: 10.1016/j.mce.2020.111096
Chase HB. Greying induced by x-rays in the mouse. Genetics. 1946;31:213.
pubmed: 21021048
Chen CC, Chuong CM. Multi-layered environmental regulation on the homeostasis of stem cells: the saga of hair growth and alopecia. J Dermatol Sci. 2012;66:3–11.
pubmed: 22391240 pmcid: 3684257 doi: 10.1016/j.jdermsci.2012.02.007
Chen CC, Plikus MV, Tang PC, Widelitz RB, Chuong CM. The Modulatable stem cell niche: tissue interactions during hair and feather follicle regeneration. J Mol Biol. 2016;428:1423–40.
pubmed: 26196442 doi: 10.1016/j.jmb.2015.07.009
Chen CC, et al. Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell. 2015;161:277–90.
pubmed: 25860610 pmcid: 4393531 doi: 10.1016/j.cell.2015.02.016
Choi S, et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature. 2021;592:428–32.
pubmed: 33790465 pmcid: 8923613 doi: 10.1038/s41586-021-03417-2
Coolidge WD. High voltage cathode rays outside the generating tube. Science. 1925;62:441.
pubmed: 17732229 doi: 10.1126/science.62.1611.441
Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61:1329–37.
pubmed: 2364430 doi: 10.1016/0092-8674(90)90696-C
Deng Z, et al. Androgen receptor-mediated paracrine signaling induces regression of blood vessels in the dermal papilla in androgenetic alopecia. J Invest Dermatol. 2022;S0022-202X(22)00009–4. https://doi.org/10.1016/j.jid.2022.01.003 . Online ahead of print.
Ding Q, et al. Early-onset androgenetic alopecia in China: a descriptive study of a large outpatient cohort. J Int Med Res. 2020;48:300060519897190.
pubmed: 32188323
Driskell RR, Jahoda CA, Chuong CM, Watt FM, Horsley V. Defining dermal adipose tissue. Exp Dermatol. 2014;23:629–31.
pubmed: 24841073 pmcid: 4282701 doi: 10.1111/exd.12450
Egger A, Tomic-Canic M, Tosti A. Advances in stem cell-based therapy for hair loss. CellR4 Repair Replace Regen Reprogram. 2020;8:e2894.
pubmed: 32968692 pmcid: 7508456
Festa E, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146:761–71.
pubmed: 21884937 pmcid: 3298746 doi: 10.1016/j.cell.2011.07.019
Garza LA, et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J Clin Invest. 2011;121:613–22.
pubmed: 21206086 pmcid: 3026732 doi: 10.1172/JCI44478
Garza LA, et al. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci Transl Med. 2012;4:126ra34.
pubmed: 22440736 pmcid: 3319975 doi: 10.1126/scitranslmed.3003122
Gilhar A, Etzioni A, Paus R. Alopecia areata. N Engl J Med. 2012;366:1515–25.
pubmed: 22512484 doi: 10.1056/NEJMra1103442
Gilhar A, Keren A, Paus R. JAK inhibitors and alopecia areata. Lancet. 2019;393:318–9.
pubmed: 30696569 doi: 10.1016/S0140-6736(18)32987-8
Gonzales KAU, Fuchs E. Skin and its regenerative powers: an Alliance between stem cells and their niche. Dev Cell. 2017;43:387–401.
pubmed: 29161590 doi: 10.1016/j.devcel.2017.10.001
Greco V, et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009;4:155–69.
pubmed: 19200804 pmcid: 2668200 doi: 10.1016/j.stem.2008.12.009
Guiu J, et al. Tracing the origin of adult intestinal stem cells. Nature. 2019;570:107–11.
pubmed: 31092921 pmcid: 6986928 doi: 10.1038/s41586-019-1212-5
Gur-Cohen S, et al. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science. 2019;366:1218–25.
pubmed: 31672914 pmcid: 6996853 doi: 10.1126/science.aay4509
Hagenaars SP, et al. Genetic prediction of male pattern baldness. PLoS Genet. 2017;13:e1006594.
pubmed: 28196072 pmcid: 5308812 doi: 10.1371/journal.pgen.1006594
Hamilton JB. Patterned loss of hair in man; types and incidence. Ann N Y Acad Sci. 1951;53:708–28.
pubmed: 14819896 doi: 10.1111/j.1749-6632.1951.tb31971.x
Hardman JA, et al. Human perifollicular macrophages undergo apoptosis, express Wnt ligands, and switch their polarization during catagen. J Invest Dermatol. 2019;139:2543–6.
pubmed: 31233759 doi: 10.1016/j.jid.2019.04.026
Hardy MH. The secret life of the hair follicle. Trends Genet. 1992;8:55–61.
pubmed: 1566372 doi: 10.1016/0168-9525(92)90350-D
Harshuk-Shabso S, Dressler H, Niehrs C, Aamar E, Enshell-Seijffers D. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nat Commun. 2020;11:5114.
pubmed: 33037205 pmcid: 7547083 doi: 10.1038/s41467-020-18643-x
Haslam IS, et al. Inhibition of Shh signaling through MAPK activation controls chemotherapy-induced alopecia. J Invest Dermatol. 2021;141:334–44.
pubmed: 32682910 doi: 10.1016/j.jid.2020.05.118
Hébert JM, Rosenquist T, Götz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell. 1994;78:1017–25.
pubmed: 7923352 doi: 10.1016/0092-8674(94)90276-3
Heilmann-Heimbach S, Hochfeld LM, Paus R, Nothen MM. Hunting the genes in male-pattern alopecia: how important are they, how close are we and what will they tell us? Exp Dermatol. 2016;25:251–7.
pubmed: 26843402 doi: 10.1111/exd.12965
Heilmann-Heimbach S, et al. Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nat Commun. 2017;8:14694.
pubmed: 28272467 pmcid: 5344973 doi: 10.1038/ncomms14694
Huang WY, et al. Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy. Cancer Res. 2017;77:6083–96.
pubmed: 28939680 pmcid: 5756475 doi: 10.1158/0008-5472.CAN-17-0667
Inomata K, et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137:1088–99.
pubmed: 19524511 doi: 10.1016/j.cell.2009.03.037
Inui S, Itami S. Androgen actions on the human hair follicle: perspectives. Exp Dermatol. 2013;22:168–71.
pubmed: 23016593 doi: 10.1111/exd.12024
Ito M, Kizawa K, Hamada K, Cotsarelis G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation. 2004;72:548–57.
pubmed: 15617565 doi: 10.1111/j.1432-0436.2004.07209008.x
Ito M, Kizawa K, Toyoda M, Morohashi M. Label-retaining cells in the bulge region are directed to cell death after plucking, followed by healing from the surviving hair germ. J Invest Dermatol. 2002;119:1310–6.
pubmed: 12485433 doi: 10.1046/j.1523-1747.2002.19644.x
Jahoda CA. Cellular and developmental aspects of androgenetic alopecia. Exp Dermatol. 1998;7:235–48.
pubmed: 9832312
Jiang TX, Harn HI, Ou KL, Lei M, Chuong CM. Comparative regenerative biology of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin. Exp Dermatol. 2019;28:442–9.
pubmed: 30734959 pmcid: 6488381 doi: 10.1111/exd.13899
Koester J, et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat Cell Biol. 2021;23:771–81.
pubmed: 34239060 doi: 10.1038/s41556-021-00705-x
Kretzschmar K, Cottle DL, Schweiger PJ, Watt FM. The androgen receptor antagonizes Wnt/beta-catenin signaling in epidermal stem cells. J Invest Dermatol. 2015;135:2753–63.
pubmed: 26121213 pmcid: 4641324 doi: 10.1038/jid.2015.242
Leirós GJ, Ceruti JM, Castellanos ML, Kusinsky AG, Balañá ME. Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia. Mol Cell Endocrinol. 2017;439:26–34.
pubmed: 27769713 doi: 10.1016/j.mce.2016.10.018
Li J, et al. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1. J Invest Dermatol. 2012b;132:2681–90.
pubmed: 22763785 pmcid: 3465630 doi: 10.1038/jid.2012.206
Li KN, et al. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. Elife. 2019;8:e45977.
pubmed: 31343406 pmcid: 6684267 doi: 10.7554/eLife.45977
Li R, et al. Six novel susceptibility loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet. 2012a;8:e1002746.
pubmed: 22693459 pmcid: 3364959 doi: 10.1371/journal.pgen.1002746
Liu Y, Xiong X, Chen YG. Dedifferentiation: the return road to repair the intestinal epithelium. Cell Regen. 2020;9:2.
pubmed: 32588148 pmcid: 7306829 doi: 10.1186/s13619-020-00048-2
Lolli F, et al. Androgenetic alopecia: a review. Endocrine. 2017;57:9–17.
pubmed: 28349362 doi: 10.1007/s12020-017-1280-y
Malkinson FD, Griem ML, Morse PH. Colchicine synergism of mouse hair root changes produced by x-ray irradiation. J Invest Dermatol. 1961;37:337–44.
pubmed: 14468947 doi: 10.1038/jid.1961.129
Malkinson FD, Keane JT. Radiobiology of the skin: review of some effects on epidermis and hair. J Invest Dermatol. 1981;77:133–8.
pubmed: 7252246 doi: 10.1111/1523-1747.ep12479347
Mecklenburg L, et al. Active hair growth (anagen) is associated with angiogenesis. J Invest Dermatol. 2000;114:909–16.
pubmed: 10771470 doi: 10.1046/j.1523-1747.2000.00954.x
Moreau JM, Gouirand V, Rosenblum MD. T-cell adhesion in healthy and inflamed skin. JID Innov. 2021;1:100014.
pubmed: 35024681 pmcid: 8669513 doi: 10.1016/j.xjidi.2021.100014
Morinaga H, et al. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature. 2021;595:266–71.
pubmed: 34163066 doi: 10.1038/s41586-021-03624-x
Murata K, et al. Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell. 2020;26:377–90.
pubmed: 32084390 pmcid: 7147146 doi: 10.1016/j.stem.2019.12.011
Naik S, Larsen SB, Cowley CJ, Fuchs E. Two to tango: dialog between immunity and stem cells in health and disease. Cell. 2018;175:908–20.
pubmed: 30388451 pmcid: 6294328 doi: 10.1016/j.cell.2018.08.071
Nicu C, et al. Dermal adipose tissue secretes HGF to promote human hair growth and pigmentation. J Invest Dermatol. 2021;141:1633–45.
pubmed: 33493531 doi: 10.1016/j.jid.2020.12.019
Oliver RF. Regeneration of dermal papillae in rat vibrissae. J Invest Dermatol. 1966;47:496–7.
pubmed: 5332411 doi: 10.1038/jid.1966.175
Oliver RF. Ectopic regeneration of whiskers in the hooded rat from implanted lengths of vibrissa follicle wall. J Embryol Exp Morpholog. 1967;17:27–34.
Panteleyev AA. Functional anatomy of the hair follicle: the secondary hair germ. Exp Dermatol. 2018;27:701–20.
pubmed: 29672929 doi: 10.1111/exd.13666
Paus R. The evolving pathogenesis of alopecia areata: major open questions. J Invest Dermatol Symp Proc. 2020;20:S6–10.
doi: 10.1016/j.jisp.2020.04.002
Paus R, Bulfone-Paus S, Bertolini M. Hair follicle immune privilege revisited: the key to alopecia areata management. J Invest Dermatol Symp Proc. 2018;19:S12–7.
doi: 10.1016/j.jisp.2017.10.014
Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341:491–7.
pubmed: 10441606 doi: 10.1056/NEJM199908123410706
Paus R, Handjiski B, Eichmüller S, Czarnetzki BM. Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine a, and modulation by dexamethasone. Am J Pathol. 1994;144:719–34.
pubmed: 8160773 pmcid: 1887229
Peña-Jimenez D, et al. Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo. EMBO J. 2019;38:e101688.
pubmed: 31475747 pmcid: 6769427 doi: 10.15252/embj.2019101688
Petukhova L, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466:113–7.
pubmed: 20596022 pmcid: 2921172 doi: 10.1038/nature09114
Petukhova L, et al. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy. Exp Dermatol. 2020;29:243–53.
pubmed: 31169925 doi: 10.1111/exd.13986
Pirastu N, et al. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nat Commun. 2017;8:1584.
pubmed: 29146897 pmcid: 5691155 doi: 10.1038/s41467-017-01490-8
Plikus MV, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008;451:340–4.
pubmed: 18202659 pmcid: 2696201 doi: 10.1038/nature06457
Plikus MV, et al. Self-organizing and stochastic behaviors during the regeneration of hair stem cells. Science. 2011;332:586–9.
pubmed: 21527712 pmcid: 3321266 doi: 10.1126/science.1201647
Potten CS. Radiation depigmentation of the mouse hair: effect of the hair growth cycle on the sensitivity. J Invest Dermatol. 1970;55:410–8.
pubmed: 5489081 doi: 10.1111/1523-1747.ep12260552
Pratt CH, King LE Jr, Messenger AG, Christiano AM, Sundberg JP. Alopecia areata. Nat Rev Dis Primers. 2017;3:17011.
pubmed: 28300084 pmcid: 5573125 doi: 10.1038/nrdp.2017.11
Qu Q, et al. Platelet-rich plasma for androgenic alopecia: a randomized, placebo-controlled, double-blind study and combined mice model experiment. J Cosmet Dermatol. 2021;20:3227–35.
pubmed: 33752252 doi: 10.1111/jocd.14089
Rahmani W, Sinha S, Biernaskie J. Immune modulation of hair follicle regeneration. NPJ Regen Med. 2020;5:9.
pubmed: 32411394 pmcid: 7214459 doi: 10.1038/s41536-020-0095-2
Rahmani W, et al. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell. 2014;31:543–58.
pubmed: 25465495 doi: 10.1016/j.devcel.2014.10.022
Randall VA. Androgens and hair growth. Dermatol Ther. 2008;21:314–28.
pubmed: 18844710 doi: 10.1111/j.1529-8019.2008.00214.x
Rochat A, Kobayashi K, Barrandon Y. Location of stem cells of human hair follicles by clonal analysis. Cell. 1994;76:1063–73.
pubmed: 8137423 doi: 10.1016/0092-8674(94)90383-2
Rognoni E, Watt FM. Skin cell heterogeneity in development, wound healing, and Cancer. Trends Cell Biol. 2018;28:709–22.
pubmed: 29807713 pmcid: 6098245 doi: 10.1016/j.tcb.2018.05.002
Rompolas P, Mesa KR, Greco V. Spatial organization within a niche as a determinant of stem-cell fate. Nature. 2013;502:513–8.
pubmed: 24097351 pmcid: 3895444 doi: 10.1038/nature12602
Rompolas P, et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature. 2012;487:496–9.
pubmed: 22763436 pmcid: 3772651 doi: 10.1038/nature11218
Schmidt B, Horsley V. Unravelling hair follicle-adipocyte communication. Exp Dermatol. 2012;21:827–30.
pubmed: 23163647 pmcid: 3507425 doi: 10.1111/exd.12001
Seifert AW, et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature. 2012;489:561–5.
pubmed: 23018966 pmcid: 3480082 doi: 10.1038/nature11499
Shapiro J, Ho A, Sukhdeo K, Yin L, Lo SK. Evaluation of platelet-rich plasma as a treatment for androgenetic alopecia: a randomized controlled trial. J Am Acad Dermatol. 2020;83:1298–303.
pubmed: 32653577 doi: 10.1016/j.jaad.2020.07.006
Shwartz Y, et al. Cell types promoting Goosebumps form a niche to regulate hair follicle stem cells. Cell. 2020;182:578–93.
pubmed: 32679029 pmcid: 7540726 doi: 10.1016/j.cell.2020.06.031
Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102:451–61.
pubmed: 10966107 doi: 10.1016/S0092-8674(00)00050-7
Tumbar T, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–63.
pubmed: 14671312 doi: 10.1126/science.1092436
Wang TL, et al. Prevalence of androgenetic alopecia in China: a community-based study in six cities. Br J Dermatol. 2010;162:843–7.
pubmed: 20105167 doi: 10.1111/j.1365-2133.2010.09640.x
Williams AW. A note on certain appearances of x-rayed hairs. Br J Dermatol. 1906;18:63–5.
Xiao Y, et al. Perivascular hair follicle stem cells associate with a venule annulus. J Invest Dermatol. 2013;133:2324–31.
pubmed: 23558405 pmcid: 3742722 doi: 10.1038/jid.2013.167
Xie Y, et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-alpha axis. Cell Stem Cell. 2022;29:70–85.
pubmed: 34624205 doi: 10.1016/j.stem.2021.09.009
Yang H, Adam RC, Ge Y, Hua ZL, Fuchs E. Epithelial-Mesenchymal Micro-niches govern stem cell lineage choices. Cell. 2017;169:483–96.
pubmed: 28413068 pmcid: 5510744 doi: 10.1016/j.cell.2017.03.038
Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest. 2001;107:409–17.
pubmed: 11181640 pmcid: 199257 doi: 10.1172/JCI11317
Yap CX, et al. Dissection of genetic variation and evidence for pleiotropy in male pattern baldness. Nat Commun. 2018;9:5407.
pubmed: 30573740 pmcid: 6302097 doi: 10.1038/s41467-018-07862-y
Yuan AR, Bian Q, Gao JQ. Current advances in stem cell-based therapies for hair regeneration. Eur J Pharmacol. 2020;881:173197.
pubmed: 32439260 doi: 10.1016/j.ejphar.2020.173197
Zhang B, et al. Hair follicles' transit-amplifying cells govern concurrent dermal adipocyte production through sonic hedgehog. Genes Dev. 2016;30:2325–38.
pubmed: 27807033 pmcid: 5110998 doi: 10.1101/gad.285429.116
Zhang B, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676–81.
pubmed: 31969699 pmcid: 7184936 doi: 10.1038/s41586-020-1935-3

Auteurs

Zhicao Yue (Z)

Department of Cell Biology and Medical Genetics, International Cancer Center, and Guangdong Key Laboratory for Genome Instability and Disease Prevention, Shenzhen University, A7-455 XiLi Campus, Shenzhen, 518060, Guangdong, China. zyue@szu.edu.cn.

Fang Yang (F)

Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.

Jianglin Zhang (J)

Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.

Ji Li (J)

Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.

Cheng-Ming Chuong (CM)

Department of Pathology, University of Southern California, Los Angeles, CA, USA.

Classifications MeSH