The role of age-associated autonomic dysfunction in inflammation and endothelial dysfunction.
Aging
Autonomic nervous system
Endothelial dysfunction
Inflammation
Oxidative stress
Journal
GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284
Informations de publication
Date de publication:
12 2022
12 2022
Historique:
received:
28
03
2022
accepted:
22
06
2022
pubmed:
1
7
2022
medline:
23
12
2022
entrez:
30
6
2022
Statut:
ppublish
Résumé
Aging of the cardiovascular regulatory function manifests as an imbalance between the sympathetic and parasympathetic (vagal) components of the autonomic nervous system (ANS). The most characteristic change is sympathetic overdrive, which is manifested by an increase in the muscle sympathetic nerve activity (MSNA) burst frequency with age. Age-related changes that occur in vagal nerve activity is less clear. The resting tonic parasympathetic activity can be estimated noninvasively by measuring the increase in heart rate occurring in response to muscarinic cholinergic receptor blockade; animal study models have shown this to diminish with age. Humoral, cellular, and neural mechanisms work together to prevent non-resolving inflammation. This review focuses on the mechanisms underlying age-related alternations in the ANS and how an imbalance in the ANS, evaluated by MSNA and heart rate variability (HRV), potentially facilitates inflammation when the homeostatic mechanisms between reflex neural circuits and the immune system are compromised, particularly the dysfunction of the cholinergic anti-inflammatory reflex. Physiologically, the efferent arm of this reflex acts via the [Formula: see text] 7 nicotinic acetylcholine receptors expressed in macrophages, monocytes, dendritic cells, T cells, and endothelial cells to curb the release of inflammatory cytokines, in which inhibition of NF‑κB nuclear translocation and activation of a JAK/STAT-mediated signaling cascade in macrophages and other immune cells are implicated. This reflex is likely to become less adequate with advanced age. Consequently, a pro-inflammatory state induced by reduced vagus output with age is associated with endothelial dysfunction and may significantly contribute to the development and propagation of atherosclerosis, heart failure, and hypertension. The aim of this review is to summarize the relationship between ANS dysfunction, inflammation, and endothelial dysfunction in the context of aging. Meanwhile, this review also attempts to describe the role of HRV measures as a predictor of the level of inflammation and endothelial dysfunction in the aged population and explore the possible therapeutical effects of vagus nerve stimulation.
Identifiants
pubmed: 35773441
doi: 10.1007/s11357-022-00616-1
pii: 10.1007/s11357-022-00616-1
pmc: PMC9768093
doi:
Types de publication
Journal Article
Review
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2655-2670Subventions
Organisme : NIGMS NIH HHS
ID : P20 GM103447
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM125528
Pays : United States
Organisme : NIA NIH HHS
ID : T32 AG052363
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to American Aging Association.
Références
Harman D. The free radical theory of aging. Antioxid Redox Signal. 2003;5(5):557–61.
doi: 10.1089/152308603770310202
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.
doi: 10.1093/geronj/11.3.298
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.
doi: 10.1038/35041687
Keir DA, Badrov MB, Tomlinson G, Notarius CF, Kimmerly DS, Millar PJ, et al. Influence of sex and age on muscle sympathetic nerve activity of healthy normotensive adults. Hypertension. 2020;76(3):997–1005.
doi: 10.1161/HYPERTENSIONAHA.120.15208
Ebert TJ, Morgan BJ, Barney JA, Denahan T, Smith JJ. Effects of aging on baroreflex regulation of sympathetic activity in humans. Am J Physiol. 1992;263(3 Pt 2):H798-803.
Pfeifer MA, Weinberg CR, Cook D, Best JD, Reenan A, Halter JB. Differential changes of autonomic nervous system function with age in man. Am J Med. 1983;75(2):249–58.
doi: 10.1016/0002-9343(83)91201-9
Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, et al. Source of Chronic Inflammation in Aging. Front Cardiovasc Med. 2018;5:12.
doi: 10.3389/fcvm.2018.00012
Mihaylova S, Schweighofer H, Hackstein H, Rosengarten B. Effects of anti-inflammatory vagus nerve stimulation in endotoxemic rats on blood and spleen lymphocyte subsets. Inflamm Res. 2014;63(8):683–90.
doi: 10.1007/s00011-014-0741-5
Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A. 2012;109(14):5322–7.
doi: 10.1073/pnas.1200012109
Sriram S, Subramanian S, Sathiakumar D, Venkatesh R, Salerno MS, McFarlane CD, et al. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-kappaB. Aging Cell. 2011;10(6):931–48.
doi: 10.1111/j.1474-9726.2011.00734.x
Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Bohm M, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res. 2004;94(4):534–41.
doi: 10.1161/01.RES.0000115557.25127.8D
Hasan W. Autonomic cardiac innervation: development and adult plasticity. Organogenesis. 2013;9(3):176–93.
doi: 10.4161/org.24892
Wink J, van Delft R, Notenboom RGE, Wouters PF, DeRuiter MC, Plevier JWM, et al. Human adult cardiac autonomic innervation: controversies in anatomical knowledge and relevance for cardiac neuromodulation. Auton Neurosci. 2020;227: 102674.
doi: 10.1016/j.autneu.2020.102674
Armour JA. Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm. 2010;7(7):994–6.
doi: 10.1016/j.hrthm.2010.02.014
Chadda KR, Ajijola OA, Vaseghi M, Shivkumar K, Huang CL, Jeevaratnam K. Ageing, the autonomic nervous system and arrhythmia: from brain to heart. Ageing Res Rev. 2018;48:40–50.
doi: 10.1016/j.arr.2018.09.005
Singh S, Johnson PI, Lee RE, Orfei E, Lonchyna VA, Sullivan HJ, et al. Topography of cardiac ganglia in the adult human heart. J Thorac Cardiovasc Surg. 1996;112(4):943–53.
doi: 10.1016/S0022-5223(96)70094-6
Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache. 2016;56(1):71–8.
doi: 10.1111/head.12647
Ito K, Sato A, Sato Y, Suzuki H. Increases in adrenal catecholamine secretion and adrenal sympathetic nerve unitary activities with aging in rats. Neurosci Lett. 1986;69(3):263–8.
doi: 10.1016/0304-3940(86)90491-X
Rowe JW, Troen BR. Sympathetic nervous system and aging in man. Endocr Rev. 1980;1(2):167–79.
doi: 10.1210/edrv-1-2-167
Wallin BG, Sundlof G, Eriksson BM, Dominiak P, Grobecker H, Lindblad LE. Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol Scand. 1981;111(1):69–73.
doi: 10.1111/j.1748-1716.1981.tb06706.x
Morrow LA, Linares OA, Hill TJ, Sanfield JA, Supiano MA, Rosen SG, et al. Age differences in the plasma clearance mechanisms for epinephrine and norepinephrine in humans. J Clin Endocrinol Metab. 1987;65(3):508–11.
doi: 10.1210/jcem-65-3-508
Billman GE, Dujardin JP. Dynamic changes in cardiac vagal tone as measured by time-series analysis. Am J Physiol. 1990;258(3 Pt 2):H896-902.
Berntson GG, Bigger JT Jr, Eckberg DL, Grossman P, Kaufmann PG, Malik M, et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623–48.
doi: 10.1111/j.1469-8986.1997.tb02140.x
Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81.
Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4:26.
doi: 10.3389/fphys.2013.00026
Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation. 1997;96(9):3224–32.
doi: 10.1161/01.CIR.96.9.3224
Marmerstein JT, McCallum GA, Durand DM. Direct measurement of vagal tone in rats does not show correlation to HRV. Sci Rep. 2021;11(1):1210.
doi: 10.1038/s41598-020-79808-8
DeBeck LD, Petersen SR, Jones KE, Stickland MK. Heart rate variability and muscle sympathetic nerve activity response to acute stress: the effect of breathing. Am J Physiol Regul Integr Comp Physiol. 2010;299(1):R80-91.
doi: 10.1152/ajpregu.00246.2009
Coruzzi P, Castiglioni P, Parati G, Brambilla V, Brambilla L, Gualerzi M, et al. Autonomic cardiovascular regulation in quiescent ulcerative colitis and Crohn’s disease. Eur J Clin Invest. 2007;37(12):964–70.
doi: 10.1111/j.1365-2362.2007.01887.x
Kox M, Ramakers BP, Pompe JC, van der Hoeven JG, Hoedemaekers CW, Pickkers P. Interplay between the acute inflammatory response and heart rate variability in healthy human volunteers. Shock. 2011;36(2):115–20.
doi: 10.1097/SHK.0b013e31821c2330
Vlcek M, Rovensky J, Eisenhofer G, Radikova Z, Penesova A, Kerlik J, et al. Autonomic nervous system function in rheumatoid arthritis. Cell Mol Neurobiol. 2012;32(5):897–901.
doi: 10.1007/s10571-012-9805-7
Thayer JF, Fischer JE. Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. J Intern Med. 2009;265(4):439–47.
doi: 10.1111/j.1365-2796.2008.02023.x
Jarczok MN, Koenig J, Mauss D, Fischer JE, Thayer JF. Lower heart rate variability predicts increased level of C-reactive protein 4 years later in healthy, nonsmoking adults. J Intern Med. 2014;276(6):667–71.
doi: 10.1111/joim.12295
Adlan AM, Veldhuijzen van Zanten J, Lip GYH, Paton JFR, Kitas GD, Fisher JP. Cardiovascular autonomic regulation, inflammation and pain in rheumatoid arthritis. Auton Neurosci. 2017;208:137-45.
Aeschbacher S, Schoen T, Dorig L, Kreuzmann R, Neuhauser C, Schmidt-Trucksass A, et al. Heart rate, heart rate variability and inflammatory biomarkers among young and healthy adults. Ann Med. 2017;49(1):32–41.
doi: 10.1080/07853890.2016.1226512
Zawadka-Kunikowska M, Slomko J, Klopocka M, Liebert A, Tafil-Klawe M, Klawe JJ, et al. Cardiac and autonomic function in patients with Crohn’s disease during remission. Adv Med Sci. 2018;63(2):334–40.
doi: 10.1016/j.advms.2018.04.009
Hu MX, Lamers F, Neijts M, Willemsen G, de Geus EJC, Penninx B. Bidirectional prospective associations between cardiac autonomic activity and inflammatory markers. Psychosom Med. 2018;80(5):475–82.
doi: 10.1097/PSY.0000000000000589
Alen NV, Parenteau AM, Sloan RP, Hostinar CE. Heart rate variability and circulating inflammatory markers in midlife. Brain Behav Immun Health. 2021;15.
Kaufman CL, Kaiser DR, Steinberger J, Dengel DR. Relationships between heart rate variability, vascular function, and adiposity in children. Clin Auton Res. 2007;17(3):165–71.
doi: 10.1007/s10286-007-0411-6
Pinter A, Horvath T, Sarkozi A, Kollai M. Relationship between heart rate variability and endothelial function in healthy subjects. Auton Neurosci. 2012;169(2):107–12.
doi: 10.1016/j.autneu.2012.05.005
Truccolo AB, Dipp T, Eibel B, Ribeiro RA, Casali KR, Irigoyen MC, et al. Association between endothelial function and autonomic modulation in patients with Chagas disease. Arq Bras Cardiol. 2013;100(2):135–40.
doi: 10.5935/abc.20130026
Watanabe S, Amiya E, Watanabe M, Takata M, Ozeki A, Watanabe A, et al. Simultaneous heart rate variability monitoring enhances the predictive value of flow-mediated dilation in ischemic heart disease. Circ J. 2013;77(4):1018–25.
doi: 10.1253/circj.CJ-12-1043
Tuttolomondo A, Del Cuore A, La Malfa A, Casuccio A, Daidone M, Maida CD, et al. Assessment of heart rate variability (HRV) in subjects with type 2 diabetes mellitus with and without diabetic foot: correlations with endothelial dysfunction indices and markers of adipo-inflammatory dysfunction. Cardiovasc Diabetol. 2021;20(1):142.
doi: 10.1186/s12933-021-01337-z
Eller NH, Malmberg B, Bruhn P. Heart rate variability and intima media thickness. Int J Behav Med. 2006;13(3):201–13.
doi: 10.1207/s15327558ijbm1303_3
Gottsater A, Ahlgren AR, Taimour S, Sundkvist G. Decreased heart rate variability may predict the progression of carotid atherosclerosis in type 2 diabetes. Clin Auton Res. 2006;16(3):228–34.
doi: 10.1007/s10286-006-0345-4
Fakhrzadeh H, Yamini-Sharif A, Sharifi F, Tajalizadekhoob Y, Mirarefin M, Mohammadzadeh M, et al. Cardiac autonomic neuropathy measured by heart rate variability and markers of subclinical atherosclerosis in early type 2 diabetes. ISRN Endocrinol. 2012;2012:168264.
doi: 10.5402/2012/168264
Galetta F, Franzoni F, Tocchini L, Camici M, Milanesi D, Belatti F, et al. Effect of physical activity on heart rate variability and carotid intima-media thickness in older people. Intern Emerg Med. 2013;8(Suppl 1):S27–9.
doi: 10.1007/s11739-013-0919-9
Pereira VL Jr, Dobre M, Dos Santos SG, Fuzatti JS, Oliveira CR, Campos LA, et al. Association between carotid intima media thickness and heart rate variability in adults at increased cardiovascular risk. Front Physiol. 2017;8:248.
doi: 10.3389/fphys.2017.00248
Hoshi RA, Santos IS, Dantas EM, Andreao RV, Mill JG, Goulart AC, et al. Relationship between heart rate variability and carotid intima-media thickness in the Brazilian Longitudinal Study of Adult Health - ELSA-Brasil. Clin Physiol Funct Imaging. 2020;40(2):122–30.
doi: 10.1111/cpf.12613
Balcioglu AS, Cicek D, Akinci S, Eldem HO, Bal UA, Okyay K, et al. Arrhythmogenic evidence for epicardial adipose tissue: heart rate variability and turbulence are influenced by epicardial fat thickness. Pacing Clin Electrophysiol. 2015;38(1):99–106.
doi: 10.1111/pace.12512
Nakao M, Nomura K, Karita K, Nishikitani M, Yano E. Relationship between brachial-ankle pulse wave velocity and heart rate variability in young Japanese men. Hypertens Res. 2004;27(12):925–31.
doi: 10.1291/hypres.27.925
Chandra P, Sands RL, Gillespie BW, Levin NW, Kotanko P, Kiser M, et al. Relationship between heart rate variability and pulse wave velocity and their association with patient outcomes in chronic kidney disease. Clin Nephrol. 2014;81(1):9–19.
doi: 10.5414/CN108020
Shah AS, El Ghormli L, Vajravelu ME, Bacha F, Farrell RM, Gidding SS, et al. Heart Rate Variability and cardiac autonomic dysfunction: prevalence, risk factors, and relationship to arterial stiffness in the treatment options for type 2 Diabetes in Adolescents and Youth (TODAY) Study. Diabetes Care. 2019;42(11):2143–50.
doi: 10.2337/dc19-0993
Choi J, Cha W, Park MG. Declining trends of heart rate variability according to aging in healthy asian adults. Front Aging Neurosci. 2020;12:610626.
doi: 10.3389/fnagi.2020.610626
Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601.
doi: 10.1016/S0735-1097(97)00554-8
Yeragani VK, Sobolewski E, Kay J, Jampala VC, Igel G. Effect of age on long-term heart rate variability. Cardiovasc Res. 1997;35(1):35–42.
doi: 10.1016/S0008-6363(97)00107-7
Almeida-Santos MA, Barreto-Filho JA, Oliveira JL, Reis FP, da Cunha Oliveira CC, Sousa AC. Aging, heart rate variability and patterns of autonomic regulation of the heart. Arch Gerontol Geriatr. 2016;63:1–8.
doi: 10.1016/j.archger.2015.11.011
Tan JPH, Beilharz JE, Vollmer-Conna U, Cvejic E. Heart rate variability as a marker of healthy ageing. Int J Cardiol. 2019;275:101–3.
doi: 10.1016/j.ijcard.2018.08.005
Geovanini GR, Vasques ER, de Oliveira AR, Mill JG, Andreao RV, Vasques BK, et al. Age and sex differences in heart rate variability and vagal specific patterns - Baependi Heart Study. Glob Heart. 2020;15(1):71.
doi: 10.5334/gh.873
Hernandez-Vicente A, Hernando D, Santos-Lozano A, Rodriguez-Romo G, Vicente-Rodriguez G, Pueyo E, et al. Heart rate variability and exceptional longevity. Front Physiol. 2020;11:566399.
doi: 10.3389/fphys.2020.566399
Balasubramanian P, Hall D, Subramanian M. Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. Geroscience. 2019;41(1):13–24.
doi: 10.1007/s11357-018-0048-5
Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood-brain barrier. NeuroImmunoModulation. 1995;2(4):241–8.
doi: 10.1159/000097202
Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46.
doi: 10.1038/nrn1902
Chapleau MW, Sabharwal R. Methods of assessing vagus nerve activity and reflexes. Heart Fail Rev. 2011;16(2):109–27.
doi: 10.1007/s10741-010-9174-6
Piantoni C, Carnevali L, Molla D, Barbuti A, DiFrancesco D, Bucchi A, et al. Age-Related changes in cardiac autonomic modulation and heart rate variability in mice. Front Neurosci. 2021;15:617698.
doi: 10.3389/fnins.2021.617698
Paintal AS. The conduction velocities of respiratory and cardiovascular afferent fibres in the vagus nerve. J Physiol. 1953;121(2):341–59.
doi: 10.1113/jphysiol.1953.sp004950
Ottaviani MM, Wright L, Dawood T, Macefield VG. In vivo recordings from the human vagus nerve using ultrasound-guided microneurography. J Physiol. 2020;598(17):3569–76.
doi: 10.1113/JP280077
Silverman HA, Stiegler A, Tsaava T, Newman J, Steinberg BE, Masi EB, et al. Standardization of methods to record vagus nerve activity in mice. Bioelectron Med. 2018;4:3.
doi: 10.1186/s42234-018-0002-y
Corbett EK, Mary DA, McWilliam PN, Batten TF. Age-related loss of cardiac vagal preganglionic neurones in spontaneously hypertensive rats. Exp Physiol. 2007;92(6):1005–13.
doi: 10.1113/expphysiol.2007.038216
Freeling JL, Li Y. Age-related attenuation of parasympathetic control of the heart in mice. Int J Physiol Pathophysiol Pharmacol. 2015;7(3):126–35.
Studinger P, Goldstein R, Taylor JA. Age- and fitness-related alterations in vascular sympathetic control. J Physiol. 2009;587(Pt 9):2049–57.
doi: 10.1113/jphysiol.2009.170134
Bernardes N, da Silva DD, Stoyell-Conti FF, de Oliveira B-M, Malfitano C, Caldini EG, et al. Baroreflex impairment precedes cardiometabolic dysfunction in an experimental model of metabolic syndrome: role of inflammation and oxidative stress. Sci Rep. 2018;8(1):8578.
doi: 10.1038/s41598-018-26816-4
Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R3–12.
doi: 10.1152/ajpregu.00031.2007
Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62.
doi: 10.1038/35013070
Deng J, Jiang H. Role of nicotinic acetylcholine receptors in cardiovascular physiology and pathophysiology: current trends and perspectives. Curr Vasc Pharmacol. 2021;19(4):370–8.
doi: 10.2174/1386207323666200917104920
Deng J, Wang M, Guo Y, Fischer H, Yu X, Kem D, et al. Activation of alpha7nAChR via vagus nerve prevents obesity-induced insulin resistance via suppressing endoplasmic reticulum stress-induced inflammation in Kupffer cells. Med Hypotheses. 2020;140:109671.
doi: 10.1016/j.mehy.2020.109671
Fagiolo U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23(9):2375–8.
doi: 10.1002/eji.1830230950
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4-9.
doi: 10.1093/gerona/glu057
Vitale G, Salvioli S, Franceschi C. Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol. 2013;9(4):228–40.
doi: 10.1038/nrendo.2013.29
Bachmann MC, Bellalta S, Basoalto R, Gomez-Valenzuela F, Jalil Y, Lepez M, et al. The challenge by multiple environmental and biological factors induce inflammation in aging: their role in the promotion of chronic disease. Front Immunol. 2020;11:570083.
doi: 10.3389/fimmu.2020.570083
Liu Y, Wu D, Song F, Zhu C, Hui Y, Zhu Q, et al. Activation of alpha7 nicotinic acetylcholine receptors prevents monosodium iodoacetate-induced osteoarthritis in rats. Cell Physiol Biochem. 2015;35(2):627–38.
doi: 10.1159/000369724
Aydemir M, Yazisiz V, Basarici I, Avci AB, Erbasan F, Belgi A, et al. Cardiac autonomic profile in rheumatoid arthritis and systemic lupus erythematosus. Lupus. 2010;19(3):255–61.
doi: 10.1177/0961203309351540
Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell. 2017;168(1–2):37–57.
doi: 10.1016/j.cell.2016.12.012
Tang Y, Dong X, Chen G, Ye W, Kang J, Tang Y, et al. Vagus Nerve stimulation attenuates early traumatic brain injury by regulating the NF-kappaB/NLRP3 signaling pathway. Neurorehabil Neural Repair. 2020;34(9):831–43.
doi: 10.1177/1545968320948065
Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10(11):1216–21.
doi: 10.1038/nm1124
Ottani A, Giuliani D, Neri L, Calevro A, Canalini F, Vandini E, et al. NDP-alpha-MSH attenuates heart and liver responses to myocardial reperfusion via the vagus nerve and JAK/ERK/STAT signaling. Eur J Pharmacol. 2015;769:22–32.
doi: 10.1016/j.ejphar.2015.10.022
de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.
doi: 10.1038/ni1229
Zhang Q, Lu Y, Bian H, Guo L, Zhu H. Activation of the alpha7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am J Transl Res. 2017;9(3):971–85.
Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Mao J, Varma V, et al. Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway. J Interv Card Electrophysiol. 2013;36(3):199–208.
doi: 10.1007/s10840-012-9752-8
dos Santos CC, Shan Y, Akram A, Slutsky AS, Haitsma JJ. Neuroimmune regulation of ventilator-induced lung injury. Am J Respir Crit Care Med. 2011;183(4):471–82.
doi: 10.1164/rccm.201002-0314OC
Ulleryd MA, Prahl U, Borsbo J, Schmidt C, Nilsson S, Bergstrom G, et al. The association between autonomic dysfunction, inflammation and atherosclerosis in men under investigation for carotid plaques. PLoS One. 2017;12(4):e0174974.
doi: 10.1371/journal.pone.0174974
Kunath J, Delaroque N, Szardenings M, Neundorf I, Straub RH. Sympathetic nerve repulsion inhibited by designer molecules in vitro and role in experimental arthritis. Life Sci. 2017;168:47–53.
doi: 10.1016/j.lfs.2016.11.009
Wei Y, Liang Y, Lin H, Dai Y, Yao S. Autonomic nervous system and inflammation interaction in endometriosis-associated pain. J Neuroinflammation. 2020;17(1):80.
doi: 10.1186/s12974-020-01752-1
Miller LE, Justen HP, Scholmerich J, Straub RH. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J. 2000;14(13):2097–107.
doi: 10.1096/fj.99-1082com
Stanojevic S, Dimitrijevic M, Kustrimovic N, Mitic K, Vujic V, Leposavic G. Adrenal hormone deprivation affects macrophage catecholamine metabolism and beta2-adrenoceptor density, but not propranolol stimulation of tumour necrosis factor-alpha production. Exp Physiol. 2013;98(3):665–78.
doi: 10.1113/expphysiol.2012.070524
Deo SH, Jenkins NT, Padilla J, Parrish AR, Fadel PJ. Norepinephrine increases NADPH oxidase-derived superoxide in human peripheral blood mononuclear cells via alpha-adrenergic receptors. Am J Physiol Regul Integr Comp Physiol. 2013;305(10):R1124–32.
doi: 10.1152/ajpregu.00347.2013
Haybar H, Shokuhian M, Bagheri M, Davari N, Saki N. Involvement of circulating inflammatory factors in prognosis and risk of cardiovascular disease. J Mol Cell Cardiol. 2019;132:110–9.
doi: 10.1016/j.yjmcc.2019.05.010
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of Endothelial Dysfunction in Cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol. 2019;10:1568.
doi: 10.3389/fphar.2019.01568
Assad TR, Hemnes AR. Metabolic dysfunction in pulmonary arterial hypertension. Curr Hypertens Rep. 2015;17(3):20.
doi: 10.1007/s11906-014-0524-y
Ozturk K, Guler AK, Cakir M, Ozen A, Demirci H, Turker T, et al. Pulse Wave velocity, intima media thickness, and flow-mediated dilatation in patients with normotensive normoglycemic inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(6):1314–20.
Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, et al. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591–619.
doi: 10.1111/bph.13517
Steyers CM 3rd, Miller FJ Jr. Endothelial dysfunction in chronic inflammatory diseases. Int J Mol Sci. 2014;15(7):11324–49.
doi: 10.3390/ijms150711324
Kaiser D, Weise G, Moller K, Scheibe J, Posel C, Baasch S, et al. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol Commun. 2014;2:169.
doi: 10.1186/s40478-014-0169-8
Hishikawa K, Luscher TF. Felodipine inhibits free-radical production by cytokines and glucose in human smooth muscle cells. Hypertension. 1998;32(6):1011–5.
doi: 10.1161/01.HYP.32.6.1011
Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973;52(3):741–4.
doi: 10.1172/JCI107236
Liu J, Liu Y, Chen J, Hu C, Teng M, Jiao K, et al. The ROS-mediated activation of IL-6/STAT3 signaling pathway is involved in the 27-hydroxycholesterol-induced cellular senescence in nerve cells. Toxicol In Vitro. 2017;45(Pt 1):10–8.
doi: 10.1016/j.tiv.2017.07.013
Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;188(12):6287–99.
doi: 10.4049/jimmunol.1200385
Barin JG, Baldeviano GC, Talor MV, Wu L, Ong S, Quader F, et al. Macrophages participate in IL-17-mediated inflammation. Eur J Immunol. 2012;42(3):726–36.
doi: 10.1002/eji.201141737
Carter AM. Inflammation, thrombosis and acute coronary syndromes. Diab Vasc Dis Res. 2005;2(3):113–21.
doi: 10.3132/dvdr.2005.018
Zhang H, Park Y, Wu J, Chen X, Lee S, Yang J, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond). 2009;116(3):219–30.
doi: 10.1042/CS20080196
Singh U, Devaraj S, Vasquez-Vivar J, Jialal I. C-reactive protein decreases endothelial nitric oxide synthase activity via uncoupling. J Mol Cell Cardiol. 2007;43(6):780–91.
doi: 10.1016/j.yjmcc.2007.08.015
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60.
doi: 10.1084/jem.20070657
Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011;124(12):1370–81.
doi: 10.1161/CIRCULATIONAHA.111.034470
Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57(2):132–40.
doi: 10.1161/HYPERTENSIONAHA.110.163576
Fu Y, Luo N, Lopes-Virella MF. Upregulation of interleukin-8 expression by prostaglandin D2 metabolite 15-deoxy-delta12, 14 prostaglandin J2 (15d-PGJ2) in human THP-1 macrophages. Atherosclerosis. 2002;160(1):11–20.
doi: 10.1016/S0021-9150(01)00541-X
Huang JS, Guh JY, Chen HC, Hung WC, Lai YH, Chuang LY. Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J Cell Biochem. 2001;81(1):102–13.
doi: 10.1002/1097-4644(20010401)81:1<102::AID-JCB1027>3.0.CO;2-Y
Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol. 1994;24(2):471–6.
doi: 10.1016/0735-1097(94)90305-0
Moreau KL, Hildreth KL, Meditz AL, Deane KD, Kohrt WM. Endothelial function is impaired across the stages of the menopause transition in healthy women. J Clin Endocrinol Metab. 2012;97(12):4692–700.
doi: 10.1210/jc.2012-2244
Khera A, McGuire DK, Murphy SA, Stanek HG, Das SR, Vongpatanasin W, et al. Race and gender differences in C-reactive protein levels. J Am Coll Cardiol. 2005;46(3):464–9.
doi: 10.1016/j.jacc.2005.04.051
Wendorff C, Wendorff H, Pelisek J, Tsantilas P, Zimmermann A, Zernecke A, et al. Carotid plaque morphology is significantly associated with sex, age, and history of neurological symptoms. Stroke. 2015;46(11):3213–9.
doi: 10.1161/STROKEAHA.115.010558
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.
doi: 10.1161/CIR.0000000000000757
Li P, Liu H, Sun P, Wang X, Wang C, Wang L, et al. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-kappaB signaling pathway in ovariectomized rats. Exp Gerontol. 2016;74:43–55.
doi: 10.1016/j.exger.2015.12.005
Deng J, Jiang Y, Wang M, Shao L, Deng C. Activation of vagovagal reflex prevents hepatic ischaemia-reperfusion-induced lung injury via anti-inflammatory and antioxidant effects. Exp Physiol. 2021;106(11):2210–22.
doi: 10.1113/EP089865
Chapleau MW, Rotella DL, Reho JJ, Rahmouni K, Stauss HM. Chronic vagal nerve stimulation prevents high-salt diet-induced endothelial dysfunction and aortic stiffening in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2016;311(1):H276–85.
doi: 10.1152/ajpheart.00043.2016
Chen C, Zhang Y, Du Z, Zhang M, Niu L, Wang Y, et al. Vagal efferent fiber stimulation ameliorates pulmonary microvascular endothelial cell injury by downregulating inflammatory responses. Inflammation. 2013;36(6):1567–75.
doi: 10.1007/s10753-013-9701-4
Krzyzaniak MJ, Peterson CY, Cheadle G, Loomis W, Wolf P, Kennedy V, et al. Efferent vagal nerve stimulation attenuates acute lung injury following burn: The importance of the gut-lung axis. Surgery. 2011;150(3):379–89.
doi: 10.1016/j.surg.2011.06.008
Zhao M, He X, Bi XY, Yu XJ, Gil Wier W, Zang WJ. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res Cardiol. 2013;108(3):345.
doi: 10.1007/s00395-013-0345-1
Dasari TW, Csipo T, Amil F, Lipecz A, Fulop GA, Jiang Y, et al. Effects of Low-Level Tragus Stimulation on Endothelial Function in Heart Failure With Reduced Ejection Fraction. J Card Fail. 2021;27(5):568–76.
doi: 10.1016/j.cardfail.2020.12.017