Thromboxane A
Crystal structure determination
G protein-coupled receptor
GPCR crystallization
GPCR expression
GPCR purification
In meso crystallization
Membrane protein
Ramatroban
Thromboxane A2 receptor
X-ray crystallography
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
30
6
2022
pubmed:
1
7
2022
medline:
6
7
2022
Statut:
ppublish
Résumé
G protein-coupled receptors (GPCRs) play vital roles in human physiology and pathophysiology. This makes the elucidation of the high-resolution blueprints of these high value membrane proteins of crucial importance for the structure-based design of novel therapeutics. However, the production and crystallization of GPCRs for structure determination comes with many challenges.In this chapter, we provide a comprehensive protocol for expressing and purifying the thromboxane A
Identifiants
pubmed: 35773586
doi: 10.1007/978-1-0716-2368-8_13
doi:
Substances chimiques
Ligands
0
Receptors, G-Protein-Coupled
0
Receptors, Thromboxane A2, Prostaglandin H2
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
241-271Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Smyth E, Grosser T, Wang M, Yu Y, FitzGerald G (2009) Prostanoids in health and disease. J Lipid Res 50:S423–S428. https://doi.org/10.1194/jlr.r800094-jlr200
doi: 10.1194/jlr.r800094-jlr200
pubmed: 19095631
pmcid: 2674745
Nakahata N (2008) Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 118:18–35. https://doi.org/10.1016/j.pharmthera.2008.01.001
doi: 10.1016/j.pharmthera.2008.01.001
pubmed: 18374420
Fan H, Chen S, Yuan X, Han S, Zhang H, Xia W, Xu Y, Zhao Q, Wu B (2019) Structural basis for ligand recognition of the human thromboxane A2 receptor. Nat Chem Biol 15:27–33. https://doi.org/10.1038/s41589-018-0170-9
doi: 10.1038/s41589-018-0170-9
pubmed: 30510189
Luckow V, Lee S, Barry G, Olins P (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579. https://doi.org/10.1128/jvi.67.8.4566-4579.1993
doi: 10.1128/jvi.67.8.4566-4579.1993
pubmed: 8392598
pmcid: 237841
Aloia A, Glatz R, McMurchie E, Leifert W (2009) GPCR expression using baculovirus-infected Sf9 cells. Methods Mol Biol 552:115–129. https://doi.org/10.1007/978-1-60327-317-6_8
doi: 10.1007/978-1-60327-317-6_8
pubmed: 19513645
Munk C, Mutt E, Isberg V, Nikolajsen L, Bibbe J, Flock T, Hanson M, Stevens R, Deupi X, Gloriam D (2019) An online resource for GPCR structure determination and analysis. Nat Methods 16:151–162. https://doi.org/10.1038/s41592-018-0302-x
doi: 10.1038/s41592-018-0302-x
pubmed: 30664776
pmcid: 6881186
Qanbar R, Bouvier M (2003) Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 97:1–33. https://doi.org/10.1016/s0163-7258(02)00300-5
doi: 10.1016/s0163-7258(02)00300-5
pubmed: 12493533
Tobin A (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153:S167–S176. https://doi.org/10.1038/sj.bjp.0707662
doi: 10.1038/sj.bjp.0707662
pubmed: 18193069
pmcid: 2268057
Chen Q, Miller L, Dong M (2010) Role of N-linked glycosylation in biosynthesis, trafficking, and function of the human glucagon-like peptide 1 receptor. Am J Physiol Endocrinol Metab 299:E62–E68. https://doi.org/10.1152/ajpendo.00067.2010
doi: 10.1152/ajpendo.00067.2010
pubmed: 20407008
pmcid: 2904048
Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18. https://doi.org/10.1107/s2053230x14026843
doi: 10.1107/s2053230x14026843
pubmed: 25615961
pmcid: 4304740
Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731. https://doi.org/10.1038/nprot.2009.31
doi: 10.1038/nprot.2009.31
pubmed: 19390528
pmcid: 2732203
Caffrey M, Porter C (2010) Crystallizing membrane proteins for structure determination using lipidic mesophases. J Vis Exp. https://doi.org/10.3791/1712
Li D, Boland C, Walsh K, Caffrey M (2012) Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. J Vis Exp. https://doi.org/10.3791/4000
Misquitta Y, Caffrey M (2003) Detergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization. Biophys J 85:3084–3096. https://doi.org/10.1016/s0006-3495(03)74727-4
doi: 10.1016/s0006-3495(03)74727-4
pubmed: 14581209
pmcid: 1303585
Gasteiger E (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. https://doi.org/10.1093/nar/gkg563
doi: 10.1093/nar/gkg563
pubmed: 12824418
pmcid: 168970
Caffrey M (2011) Crystallizing membrane proteins for structure–function studies using lipidic mesophases. Biochem Soc Trans 39:725–732. https://doi.org/10.1042/bst0390725
doi: 10.1042/bst0390725
pubmed: 21599641
pmcid: 3739445