Uses of mathematical modeling to estimate the impact of mass drug administration of antibiotics on antimicrobial resistance within and between communities.
Antibiotic resistance
Azithromycin
Mass drug administration
Mathematical model
Journal
Infectious diseases of poverty
ISSN: 2049-9957
Titre abrégé: Infect Dis Poverty
Pays: England
ID NLM: 101606645
Informations de publication
Date de publication:
30 Jun 2022
30 Jun 2022
Historique:
received:
26
10
2021
accepted:
09
06
2022
entrez:
30
6
2022
pubmed:
1
7
2022
medline:
6
7
2022
Statut:
epublish
Résumé
Antibiotics are a key part of modern healthcare, but their use has downsides, including selecting for antibiotic resistance, both in the individuals treated with antibiotics and in the community at large. When evaluating the benefits and costs of mass administration of azithromycin to reduce childhood mortality, effects of antibiotic use on antibiotic resistance are important but difficult to measure, especially when evaluating resistance that "spills over" from antibiotic-treated individuals to other members of their community. The aim of this scoping review was to identify how the existing literature on antibiotic resistance modeling could be better leveraged to understand the effect of mass drug administration (MDA) on antibiotic resistance. Mathematical models of antibiotic use and resistance may be useful for estimating the expected effects of different MDA implementations on different populations, as well as aiding interpretation of existing data and guiding future experimental design. Here, strengths and limitations of models of antibiotic resistance are reviewed, and possible applications of those models in the context of mass drug administration with azithromycin are discussed. Statistical models of antibiotic use and resistance may provide robust and relevant estimates of the possible effects of MDA on resistance. Mechanistic models of resistance, while able to more precisely estimate the effects of different implementations of MDA on resistance, may require more data from MDA trials to be accurately parameterized.
Sections du résumé
BACKGROUND
BACKGROUND
Antibiotics are a key part of modern healthcare, but their use has downsides, including selecting for antibiotic resistance, both in the individuals treated with antibiotics and in the community at large. When evaluating the benefits and costs of mass administration of azithromycin to reduce childhood mortality, effects of antibiotic use on antibiotic resistance are important but difficult to measure, especially when evaluating resistance that "spills over" from antibiotic-treated individuals to other members of their community. The aim of this scoping review was to identify how the existing literature on antibiotic resistance modeling could be better leveraged to understand the effect of mass drug administration (MDA) on antibiotic resistance.
MAIN TEXT
METHODS
Mathematical models of antibiotic use and resistance may be useful for estimating the expected effects of different MDA implementations on different populations, as well as aiding interpretation of existing data and guiding future experimental design. Here, strengths and limitations of models of antibiotic resistance are reviewed, and possible applications of those models in the context of mass drug administration with azithromycin are discussed.
CONCLUSIONS
CONCLUSIONS
Statistical models of antibiotic use and resistance may provide robust and relevant estimates of the possible effects of MDA on resistance. Mechanistic models of resistance, while able to more precisely estimate the effects of different implementations of MDA on resistance, may require more data from MDA trials to be accurately parameterized.
Identifiants
pubmed: 35773748
doi: 10.1186/s40249-022-00997-7
pii: 10.1186/s40249-022-00997-7
pmc: PMC9245243
doi:
Substances chimiques
Anti-Bacterial Agents
0
Azithromycin
83905-01-5
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
75Informations de copyright
© 2022. The Author(s).
Références
Clin Infect Dis. 2015 May 1;60(9):1308-16
pubmed: 25747410
One Health. 2021 Jan 26;12:100220
pubmed: 33644290
JAMA. 2004 Aug 11;292(6):721-5
pubmed: 15304470
N Engl J Med. 2018 Apr 26;378(17):1583-1592
pubmed: 29694816
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9
pubmed: 20018697
N Engl J Med. 2019 Jun 06;380(23):2271-2273
pubmed: 31167060
J R Soc Interface. 2017 Aug;14(133):
pubmed: 28835542
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E11988-E11995
pubmed: 30559213
Nat Med. 1999 May;5(5):572-6
pubmed: 10229236
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1075-1080
pubmed: 28096340
Int J Epidemiol. 2014 Aug;43(4):1105-13
pubmed: 24659584
J Clin Microbiol. 2007 Mar;45(3):948-52
pubmed: 17202280
J R Soc Interface. 2018 Jun;15(143):
pubmed: 29925579
Emerg Infect Dis. 2002 Apr;8(4):347-54
pubmed: 11971765
PLoS Biol. 2022 Mar 9;20(3):e3001579
pubmed: 35263322
PLoS One. 2012;7(5):e38271
pubmed: 22693610
JAC Antimicrob Resist. 2019 Dec;1(3):dlz070
pubmed: 32280945
N Engl J Med. 2019 Nov 28;381(22):2184-2185
pubmed: 31774979
Lancet. 2011 Aug 6;378(9790):515-25
pubmed: 21481448
Trends Microbiol. 2001 Sep;9(9):438-44
pubmed: 11553456
Lancet Infect Dis. 2019 Jan;19(1):e14-e25
pubmed: 30292480
Elife. 2018 Dec 18;7:
pubmed: 30560781
N Engl J Med. 2019 Nov 28;381(22):2184
pubmed: 31774978
Lancet. 2005 Feb 12-18;365(9459):579-87
pubmed: 15708101
N Engl J Med. 2020 Jul 23;383(4):303-305
pubmed: 32412711
PLoS Pathog. 2019 May 13;15(5):e1007763
pubmed: 31083687
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29063-29068
pubmed: 33139558
Parasit Vectors. 2020 Jun 8;13(1):290
pubmed: 32513254
JAMA. 2009 Sep 2;302(9):962-8
pubmed: 19724043
Emerg Infect Dis. 2008 Nov;14(11):1722-30
pubmed: 18976555
JAMA. 2016 May 3;315(17):1864-73
pubmed: 27139059
Science. 2004 Jan 16;303(5656):327-32
pubmed: 14726583
Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12106-11
pubmed: 9342370
Annu Rev Public Health. 2018 Apr 1;39:77-94
pubmed: 29328870
J Clin Microbiol. 2017 Dec 26;56(1):
pubmed: 29093105
Clin Microbiol Rev. 2013 Apr;26(2):289-307
pubmed: 23554418
PLoS One. 2019 Jun 10;14(6):e0218134
pubmed: 31181106
Am J Trop Med Hyg. 2017 Sep;97(3):815-818
pubmed: 28722638
Cochrane Database Syst Rev. 2019 Sep 26;9:CD001860
pubmed: 31554017
N Engl J Med. 1997 Aug 14;337(7):441-6
pubmed: 9250845
J Antimicrob Chemother. 2010 Feb;65(2):350-60
pubmed: 19900952
JAMA Netw Open. 2019 Oct 2;2(10):e1912644
pubmed: 31584684
JAMA. 2006 Mar 8;295(10):1142-6
pubmed: 16522834
Nat Ecol Evol. 2019 Mar;3(3):440-449
pubmed: 30742105
Clin Infect Dis. 2001 Apr 1;32(7):1044-54
pubmed: 11264033
Clin Infect Dis. 1997 Jan;24 Suppl 1:S9-16
pubmed: 8994776
J Antimicrob Chemother. 2018 Jun 1;73(6):1700-1707
pubmed: 29394363
Clin Infect Dis. 2020 Jul 27;71(3):532-538
pubmed: 31504346
BMC Infect Dis. 2019 Nov 29;19(1):1011
pubmed: 31783803
Lancet Planet Health. 2018 Sep;2(9):e398-e405
pubmed: 30177008
Genetics. 2009 Dec;183(4):1421-30
pubmed: 19797047
Curr Opin Pharmacol. 2011 Oct;11(5):477-85
pubmed: 21840259
Front Microbiol. 2016 Sep 07;7:1420
pubmed: 27656179
BMC Infect Dis. 2014 Jan 09;14:13
pubmed: 24405683
BMC Med. 2017 Apr 27;15(1):86
pubmed: 28446169
Lancet. 1999 Aug 21;354(9179):630-5
pubmed: 10466664
N Engl J Med. 2019 Jun 06;380(23):2197-2206
pubmed: 30699301
Science. 2012 Mar 16;335(6074):1376-80
pubmed: 22383809
J R Soc Interface. 2005 Sep 22;2(4):295-307
pubmed: 16849187
Nat Microbiol. 2019 Jul;4(7):1160-1172
pubmed: 30962570
Clin Infect Dis. 2010 Sep 1;51(5):571-4
pubmed: 20649409
Scand J Infect Dis. 2007;39(9):757-63
pubmed: 17701712
J Infect Dis. 1980 Dec;142(6):923-33
pubmed: 7462701
N Engl J Med. 2019 Jun 6;380(23):2264-2265
pubmed: 31167057
Epidemics. 2009 Mar;1(1):2-13
pubmed: 21352747
PLoS Med. 2008 Mar 25;5(3):e74
pubmed: 18366252