Determining the Set of Items to Include in Breast Operative Reports, Using Clustering Algorithms on Retrospective Data Extracted from Clinical DataWarehouse.


Journal

Studies in health technology and informatics
ISSN: 1879-8365
Titre abrégé: Stud Health Technol Inform
Pays: Netherlands
ID NLM: 9214582

Informations de publication

Date de publication:
29 Jun 2022
Historique:
entrez: 1 7 2022
pubmed: 2 7 2022
medline: 6 7 2022
Statut: ppublish

Résumé

Medical reports are key elements to guarantee the quality, and continuity of care but their quality remains an issue. Standardization and structuration of reports can increase their quality, but are usually based on expert opinions. Here, we hypothesize that a structured model of medical reports could be learnt using machine learning on retrospective medical reports extracted from clinical data warehouses (CDW). To investigate our hypothesis, we extracted breast cancer operative reports from our CDW. Each document was preprocessed and split into sentences. Clustering was performed using TFIDF, Paraphrase or Universal Sentence Encoder along with K-Means, DBSCAN, or Hierarchical clustering. The best couple was TFIDF/K-Means, providing a sentence coverage of 89 % on our dataset; and allowing to identify 7 main categories of items to include in breast cancer operative reports. These results are encouraging for a document preset creation task and should then be validated and implemented in real life.

Identifiants

pubmed: 35773802
pii: SHTI220656
doi: 10.3233/SHTI220656
doi:

Types de publication

Journal Article

Langues

eng

Pagination

45-48

Auteurs

Adrien Boukobza (A)

Université de Paris, Inserm, Sorbonne Université, Centre de Recherche des Cordeliers, F-75006 Paris, France.
HeKA, Inria Paris, France.
Department of Medical Informatics, Hôpital Européen Georges-Pompidou and Hôpital Necker - Enfants Malades, AP-HP, Paris, France.

Maxime Wack (M)

Université de Paris, Inserm, Sorbonne Université, Centre de Recherche des Cordeliers, F-75006 Paris, France.
HeKA, Inria Paris, France.
Department of Medical Informatics, Hôpital Européen Georges-Pompidou and Hôpital Necker - Enfants Malades, AP-HP, Paris, France.

Antoine Neuraz (A)

Université de Paris, Inserm, Sorbonne Université, Centre de Recherche des Cordeliers, F-75006 Paris, France.
HeKA, Inria Paris, France.
Department of Medical Informatics, Hôpital Européen Georges-Pompidou and Hôpital Necker - Enfants Malades, AP-HP, Paris, France.

Daniela Geromin (D)

Plateforme Centre de Ressources Biologiques et Tumorothèque, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France.

Cécile Badoual (C)

Plateforme Centre de Ressources Biologiques et Tumorothèque, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France.

Anne-Sophie Bats (AS)

INSERM UMR-S 1147, Université de Paris, Paris, France.
Chirurgie cancérologique gynécologique et du sein, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France.

Anita Burgun (A)

Université de Paris, Inserm, Sorbonne Université, Centre de Recherche des Cordeliers, F-75006 Paris, France.
HeKA, Inria Paris, France.
Department of Medical Informatics, Hôpital Européen Georges-Pompidou and Hôpital Necker - Enfants Malades, AP-HP, Paris, France.

Meriem Koual (M)

Chirurgie cancérologique gynécologique et du sein, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France.
Université de Paris, Laboratoire INSERM 1124- Equipe 1 METATOX, Paris, France.

Rosy Tsopra (R)

Université de Paris, Inserm, Sorbonne Université, Centre de Recherche des Cordeliers, F-75006 Paris, France.
HeKA, Inria Paris, France.
Department of Medical Informatics, Hôpital Européen Georges-Pompidou and Hôpital Necker - Enfants Malades, AP-HP, Paris, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH