Prostate Cancer Treatment with Pencil Beam Proton Therapy Using Rectal Spacers sans Endorectal Balloons.
endorectal balloon
prostate cancer
proton therapy
radiation therapy
rectal spacer
Journal
International journal of particle therapy
ISSN: 2331-5180
Titre abrégé: Int J Part Ther
Pays: United States
ID NLM: 101674108
Informations de publication
Date de publication:
2022
2022
Historique:
received:
22
10
2021
accepted:
01
02
2022
entrez:
1
7
2022
pubmed:
2
7
2022
medline:
2
7
2022
Statut:
epublish
Résumé
Proton beam radiotherapy (PBT) has been used for the definitive treatment of localized prostate cancer with low rates of high-grade toxicity and excellent patient-reported quality-of-life metrics. Technological advances such as pencil beam scanning (PBS), Monte Carlo dose calculations, and polyethylene glycol gel rectal spacers have optimized prostate proton therapy. Here, we report the early clinical outcomes of patients treated for localized prostate cancer using modern PBS-PBT with hydrogel rectal spacing and fiducial tracking without the use of endorectal balloons. This is a single institutional review of consecutive patients treated with histologically confirmed localized prostate cancer. Prior to treatment, all patients underwent placement of fiducials into the prostate and insertion of a hydrogel rectal spacer. Patients were typically given a prescription dose of 7920 cGy at 180 cGy per fraction using a Monte Carlo dose calculation algorithm. Acute and late toxicity were evaluated using the Common Terminology Criteria for Adverse Events (CTCAE), version 5. Biochemical failure was defined using the Phoenix definition. From July 2018 to April 2020, 33 patients were treated (median age, 75 years). No severe acute toxicities were observed. The most common acute toxicity was urinary frequency. With a median follow-up of 18 months, there were no high-grade genitourinary late toxicities; however, one grade 3 gastrointestinal toxicity was observed. Late erectile dysfunction was common. One treatment failure was observed at 21 months in a patient treated for high-risk prostate cancer. Early clinical outcomes of patients treated with PBS-PBT using Monte Carlo-based planning, fiducial placement, and rectal spacers sans endorectal balloons demonstrate minimal treatment-related toxicity with good oncologic outcomes. Rectal spacer stabilization without the use of endorectal balloons is feasible for the use of PBS-PBT.
Identifiants
pubmed: 35774493
doi: 10.14338/IJPT-21-00039
pii: Customer: THEIJPT-D-21-00039
pmc: PMC9238133
doi:
Types de publication
Journal Article
Langues
eng
Pagination
28-41Informations de copyright
©Copyright 2022 The Author(s).
Déclaration de conflit d'intérêts
Conflicts of Interest: Sean P. Collins is a paid speaker for Augmenix. The authors have no additional relevant conflicts of interest to disclose.
Références
Int J Radiat Oncol Biol Phys. 2015 Aug 1;92(5):971-977
pubmed: 26054865
BJU Int. 2018 Sep;122(3):427-433
pubmed: 29520983
Radiat Oncol. 2019 Jan 10;14(1):4
pubmed: 30630500
Adv Radiat Oncol. 2019 Sep 05;5(1):92-100
pubmed: 32051895
Cancer. 2015 Apr 1;121(7):1118-27
pubmed: 25423899
J Appl Clin Med Phys. 2017 Mar;18(2):106-112
pubmed: 28300377
Am J Clin Oncol. 2018 Feb;41(2):115-120
pubmed: 26523442
Radiat Oncol. 2016 Sep 27;11(1):128
pubmed: 27671348
J Clin Oncol. 2010 Mar 1;28(7):1106-11
pubmed: 20124169
J Appl Clin Med Phys. 2019 Jan;20(1):128-136
pubmed: 30488548
Radiat Oncol. 2020 Jul 22;15(1):178
pubmed: 32698843
Int J Part Ther. 2019 Spring;5(4):23-31
pubmed: 31773038
Int J Radiat Oncol Biol Phys. 2020 Nov 1;108(3):635-643
pubmed: 32035187
Int J Radiat Oncol Biol Phys. 2017 Oct 1;99(2):374-377
pubmed: 28871986
Int J Radiat Oncol Biol Phys. 2007 Oct 1;69(2):434-43
pubmed: 17482768
Clin Oncol (R Coll Radiol). 2016 Oct;28(10):e148-54
pubmed: 27298241
Int J Radiat Oncol Biol Phys. 2013 Sep 1;87(1):81-7
pubmed: 23414766
Int J Clin Oncol. 2018 Apr;23(2):353-360
pubmed: 29098520
Int J Radiat Oncol Biol Phys. 2016 May 1;95(1):422-434
pubmed: 27084658
J Appl Clin Med Phys. 2017 Jan;18(1):32-39
pubmed: 28291917
Int J Radiat Oncol Biol Phys. 2019 Nov 15;105(4):713-722
pubmed: 31199994
Int J Part Ther. 2019 Spring;5(4):32-40
pubmed: 31773039
Int J Radiat Oncol Biol Phys. 2010 Mar 15;76(4):1251-8
pubmed: 19939577
Pract Radiat Oncol. 2015 Mar-Apr;5(2):99-105
pubmed: 25413411
Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):e353-62
pubmed: 22483697
Radiat Oncol. 2018 Sep 17;13(1):179
pubmed: 30223877
JAMA. 1979 May 4;241(18):1912-5
pubmed: 107338
J Radiat Res. 2021 Mar 10;62(2):294-299
pubmed: 33341901
J Med Imaging Radiat Oncol. 2019 Dec;63(6):829-835
pubmed: 31486267
Acta Oncol. 2017 Jul;56(7):963-970
pubmed: 28514929
Int J Part Ther. 2019 Summer;6(1):1-9
pubmed: 31773043
Int J Radiat Oncol Biol Phys. 2017 Apr 1;97(5):976-985
pubmed: 28209443
Int J Radiat Oncol Biol Phys. 2014 Mar 1;88(3):596-602
pubmed: 24521677
Int J Radiat Oncol Biol Phys. 2013 Dec 1;87(5):946-53
pubmed: 24139077
Int J Radiat Oncol Biol Phys. 2004 Jun 1;59(2):348-52
pubmed: 15145147
Int J Radiat Oncol Biol Phys. 2014 Dec 1;90(5):1186-94
pubmed: 25442043
Int J Radiat Oncol Biol Phys. 2013 Oct 1;87(2):375-82
pubmed: 23958148
Acta Oncol. 2017 Apr;56(4):575-581
pubmed: 28075206
World J Urol. 2019 Jun;37(6):1111-1116
pubmed: 30251049