Biogeography of cereal stemborers and their natural enemies: forecasting pest management efficacy under changing climate.
MaxEnt
biogeography
climate change
host-parasitoid interaction
warming tolerance
Journal
Pest management science
ISSN: 1526-4998
Titre abrégé: Pest Manag Sci
Pays: England
ID NLM: 100898744
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
revised:
28
06
2022
received:
06
12
2021
accepted:
30
06
2022
pubmed:
2
7
2022
medline:
5
10
2022
entrez:
1
7
2022
Statut:
ppublish
Résumé
Climate warming presents physiological challenges to insects, manifesting as loss of key life-history fitness traits and survival. For interacting host-parasitoid species, physiological responses to heat stress may vary, thereby potentially uncoupling trophic ecological relationships. Here, we assessed heat tolerance traits and sensitivity to prevailing and future maximum temperatures for the cereal stemborer pests, Chilo partellus, Busseola fusca and Sesamia calamistis and their endo-parasitoids, Cotesia sesamiae and Cotesia flavipes. We further used the machine learning algorithm, Maximum Entropy (MaxEnt), to model current and potential distribution of these species. The mean critical thermal maxima (CT These results suggest C. sesamiae and C. flavipes may face survival constraints or extirpation compared with their pest hosts when environmental temperature reaches their upper thermal limits earlier, likely reducing pest regulation through density-mediated effects. The results demonstrate potential destabilization of stemborer-parasitoid trophic systems potentially compromising biocontrol efficacy under climate warming. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Sections du résumé
BACKGROUND
BACKGROUND
Climate warming presents physiological challenges to insects, manifesting as loss of key life-history fitness traits and survival. For interacting host-parasitoid species, physiological responses to heat stress may vary, thereby potentially uncoupling trophic ecological relationships. Here, we assessed heat tolerance traits and sensitivity to prevailing and future maximum temperatures for the cereal stemborer pests, Chilo partellus, Busseola fusca and Sesamia calamistis and their endo-parasitoids, Cotesia sesamiae and Cotesia flavipes. We further used the machine learning algorithm, Maximum Entropy (MaxEnt), to model current and potential distribution of these species.
RESULTS
RESULTS
The mean critical thermal maxima (CT
CONCLUSION
CONCLUSIONS
These results suggest C. sesamiae and C. flavipes may face survival constraints or extirpation compared with their pest hosts when environmental temperature reaches their upper thermal limits earlier, likely reducing pest regulation through density-mediated effects. The results demonstrate potential destabilization of stemborer-parasitoid trophic systems potentially compromising biocontrol efficacy under climate warming. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Identifiants
pubmed: 35775140
doi: 10.1002/ps.7062
pmc: PMC9796525
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4446-4457Subventions
Organisme : NORAD CAP-AFRICA
Organisme : Midlands State University (MSU)
Organisme : Rhodes University
Organisme : Botswana International University of Science and Technology (BIUST)
Organisme : University of the Free State (UFS)
Organisme : Government of the Republic of Kenya
Organisme : Federal Democratic Republic of Ethiopia
Organisme : Swiss Agency for Development and Cooperation (SDC)
Organisme : Swedish International Development Cooperation Agency (SIDA)
Organisme : Food and Resilience to Climate Change (CAP-AFRICA)
ID : RAF-3058 KEN-18/0005
Organisme : Norwegian Agency for Development Cooperation (NORAD)
Informations de copyright
© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Références
PLoS One. 2014 Jan 27;9(1):e87535
pubmed: 24475303
J Econ Entomol. 2008 Jun;101(3):686-91
pubmed: 18613566
Philos Trans R Soc Lond B Biol Sci. 2010 Oct 12;365(1555):3161-76
pubmed: 20819810
Science. 2008 Feb 1;319(5863):607-10
pubmed: 18239122
PLoS One. 2018 Feb 13;13(2):e0191840
pubmed: 29438408
Insect Sci. 2018 Oct;25(5):847-860
pubmed: 28374539
PLoS One. 2014 Jul 23;9(7):e103279
pubmed: 25054554
Sci Rep. 2021 Nov 12;11(1):22192
pubmed: 34772933
Sci Rep. 2020 Jan 8;10(1):22
pubmed: 31913334
Sci Total Environ. 2022 Feb 10;807(Pt 1):150575
pubmed: 34634717
Bull Entomol Res. 2014 Dec;104(6):809-22
pubmed: 25229840
Annu Rev Entomol. 2016;61:77-98
pubmed: 26527302
Conserv Physiol. 2014 Nov 10;2(1):cou045
pubmed: 27293666
Insects. 2021 Mar 24;12(4):
pubmed: 33804807
Parasit Vectors. 2020 Dec 1;13(1):604
pubmed: 33261665
Science. 2017 May 5;356(6337):473-474
pubmed: 28473543
Annu Rev Entomol. 2007;52:107-26
pubmed: 16846383
Annu Rev Entomol. 2016;61:433-51
pubmed: 26667379
J Insect Sci. 2017 Jul 1;17(4):
pubmed: 28973492
Annu Rev Entomol. 2002;47:701-31
pubmed: 11729089
Pest Manag Sci. 2018 Mar 25;:
pubmed: 29575502
Annu Rev Entomol. 2007;52:37-55
pubmed: 16842033
PLoS One. 2015 Jun 15;10(6):e0130427
pubmed: 26075605
J Therm Biol. 2019 Jan;79:85-94
pubmed: 30612691
Pest Manag Sci. 2022 Jun;78(6):2596-2606
pubmed: 35338563
Curr Opin Insect Sci. 2021 Oct;47:67-74
pubmed: 33989831
Int J Insect Sci. 2013 Jan 31;5:
pubmed: 35241948