Photoelectrochemical sandwich immunoassay of brain glycogen phosphorylase based on methyl orange-sensitized TiO
Controlled release of hole scavenger
Glycogen phosphorylase BB
Methyl orange/TiO2 nanorod heterojunction
Photoelectrochemistry
Sandwich-type immunoassay
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
01 07 2022
01 07 2022
Historique:
received:
11
04
2022
accepted:
04
06
2022
entrez:
1
7
2022
pubmed:
2
7
2022
medline:
8
7
2022
Statut:
epublish
Résumé
The photoelectrochemical immunoassay of glycogen phosphorylase BB (GPBB) was studied. A methyl orange/TiO
Identifiants
pubmed: 35776227
doi: 10.1007/s00604-022-05367-6
pii: 10.1007/s00604-022-05367-6
doi:
Substances chimiques
Azo Compounds
0
Mercaptoethylamines
0
titanium dioxide
15FIX9V2JP
methyl orange
6B4TC34456
Silicon Dioxide
7631-86-9
Titanium
D1JT611TNE
Glycogen Phosphorylase
EC 2.4.1.-
Ascorbic Acid
PQ6CK8PD0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
265Subventions
Organisme : National Natural Science Foundation of China
ID : 22074039
Organisme : National Natural Science Foundation of China
ID : 21675050
Organisme : National Natural Science Foundation of China
ID : 22002042
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Pu QL, Yang XH, Guo YC, Dai T, Yang TY, Ou XY et al (2019) Simultaneous colorimetric determination of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles into a multiple immunosorbent assay. Microchim Acta 186:138. https://doi.org/10.1007/s00604-019-3242-y
doi: 10.1007/s00604-019-3242-y
Aldous SJ (2013) Cardiac biomarkers in acute myocardial infarction. Int J Cardiol 164:282–294. https://doi.org/10.1016/j.ijcard.2012.01.081
doi: 10.1016/j.ijcard.2012.01.081
pubmed: 22341694
Aydin S, Ugur K, Aydin S, Sahin I, Yardim M (2019) Biomarkers in acute myocardial infarction: current perspectives. Vasc Health Risk Manag 15:1–10. https://doi.org/10.2147/vhrm.S166157
doi: 10.2147/vhrm.S166157
pubmed: 30697054
pmcid: 6340361
Pyati AK, Devaranavadagi BB, Sajjannar SL, Nikam SV, Shannawaz M, Sudharani (2015) Heart-type fatty acid binding protein: a better cardiac biomarker than CK-MB and myoglobin in the early diagnosis of acute myocardial infarction. Journal of clinical and diagnostic research: JCDR 9:BC08-11. https://doi.org/10.7860/jcdr/2015/15132.6684
Nigam PK (2007) Biochemical markers of myocardial injury. Indian J Clin Biochem: IJCB 22:10–17. https://doi.org/10.1007/bf02912874
doi: 10.1007/bf02912874
pubmed: 23105645
pmcid: 3454263
Lippi G, Mattiuzzi C, Comelli I, Cervellin G (2013) Glycogen phosphorylase isoenzyme BB in the diagnosis of acute myocardial infarction: a meta-analysis. Biochemia Medica 23:78–82. https://doi.org/10.11613/bm.2013.010
doi: 10.11613/bm.2013.010
pubmed: 23457768
pmcid: 3900091
Apple FS, Wu AHB, Mair J, Ravkilde J, Panteghini M, Tate J et al (2005) Future biomarkers for detection of ischemia and risk stratification in acute coronary syndrome. Clin Chem 51:810–824. https://doi.org/10.1373/clinchem.2004.046292
doi: 10.1373/clinchem.2004.046292
pubmed: 15774573
Krause EG, Rabitzsch G, Noll F, Mair J, Puschendorf B (1996) Glycogen phosphorylase isoenzyme BB in diagnosis of myocardial ischaemic injury and infarction. Mol Cell Biochem 160–161:289–295. https://doi.org/10.1007/BF00240061
doi: 10.1007/BF00240061
pubmed: 8901485
Lim WY, Thevarajah TM, Goh BT, Khor SM (2019) Paper microfluidic device for early diagnosis and prognosis of acute myocardial infarction via quantitative multiplex cardiac biomarker detection. Biosens Bioelectron 128:176–185. https://doi.org/10.1016/j.bios.2018.12.049
doi: 10.1016/j.bios.2018.12.049
pubmed: 30685097
Singh N, Rathore V, Mahat RK, Rastogi P (2018) Glycogen phosphorylase BB: a more sensitive and specific marker than other cardiac markers for early diagnosis of acute myocardial infarction. Indian J Clin Biochem 33:356–360. https://doi.org/10.1007/s12291-017-0685-y
doi: 10.1007/s12291-017-0685-y
pubmed: 30072837
Park K-Y, Ay I, Avery R, Caceres JA, Siket MS, Pontes-Neto OM et al (2018) New biomarker for acute ischaemic stroke: plasma glycogen phosphorylase isoenzyme BB. J Neurol Neurosurg Psychiatry 89:404–409. https://doi.org/10.1136/jnnp-2017-316084
doi: 10.1136/jnnp-2017-316084
pubmed: 29030420
Tabrizi MA, Ferre-Borrull J, Kapruwan P, Marsal LF (2019) A photoelectrochemical sandwich immunoassay for protein S100, a biomarker for Alzheimer’s disease, using an ITO electrode modified with a reduced graphene oxide-gold conjugate and CdS-labeled secondary antibody. Microchim Acta 186:117. https://doi.org/10.1007/s00604-018-3159-x
doi: 10.1007/s00604-018-3159-x
Zhao WW, Xu JJ, Chen HY (2015) Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev 44:729–741. https://doi.org/10.1039/c4cs00228h
doi: 10.1039/c4cs00228h
pubmed: 25223761
Li N, Fu C, Wang F, Sun Y, Zhang L, Ge S et al (2020) Photoelectrochemical detection of let-7a based on toehold-mediated strand displacement reaction and Bi
doi: 10.1016/j.snb.2020.128655
Wang GL, Yuan F, Gu TT, Dong YM, Wang Q, Zhao WW (2018) Enzyme-initiated quinone-chitosan conjugation chemistry: toward a general in situ strategy for high-throughput photoelectrochemical enzymatic bioanalysis. Anal Chem 90:1492–1497. https://doi.org/10.1021/acs.analchem.7b04625
doi: 10.1021/acs.analchem.7b04625
pubmed: 29345904
Wang H, Xiao J, Li C, Li X, Deng K (2020) A photoelectrochemical immunosensor for prostate specific antigen detection based on graphdiyne oxide conjugated with horseradish peroxidase. Electroanalysis 33:652–662. https://doi.org/10.1002/elan.202060296
doi: 10.1002/elan.202060296
Yang WK, Wang XH, Hao WJ, Wu Q, Peng J, Tu JC et al (2020) 3D hollow-out TiO
doi: 10.1039/d0tb00082e
Xu R, Liu L, Liu XJ, Li YY, Feng RQ, Wang H et al (2020) Novel electron donor encapsulation assay based on the split-type photoelectrochemical interface. ACS Appl Mater Interfaces 12:7366–7371. https://doi.org/10.1021/acsami.9b21804
doi: 10.1021/acsami.9b21804
pubmed: 31961654
Wang YH, Shi HH, Cui K, Zhang LN, Ge SG, Yan M et al (2018) Hierarchical hematite/TiO
doi: 10.1016/j.bios.2018.06.030
pubmed: 29982122
Zhou Q, Lin YX, Shu J, Zhang KY, Yu ZZ, Tang DP (2017) Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system. Biosens Bioelectron 98:15–21. https://doi.org/10.1016/j.bios.2017.06.033
doi: 10.1016/j.bios.2017.06.033
pubmed: 28646718
Hafez H, Lan Z, Li Q, Wu J (2010) High efficiency dye-sensitized solar cell based on novel TiO
doi: 10.2147/nsa.S11350
pubmed: 24198470
pmcid: 3781742
Guo WX, Xu C, Wang X, Wang SH, Pan CF, Lin CJ et al (2012) Rectangular bunched rutile TiO
doi: 10.1021/ja2120585
pubmed: 22300521
Asiam FK, Hao NH, Kaliamurthy AK, Kang HC, Yoo K, Lee JJ (2021) Preliminary investigation on vacancy filling by small molecules on the performance of dye-sensitized solar cells: the case of a type-II absorber. Front Chem 9:701781. https://doi.org/10.3389/fchem.2021.701781
doi: 10.3389/fchem.2021.701781
pubmed: 34307301
pmcid: 8297438
Zhang KY, Lv SZ, Zhou Q, Tang DP (2020) CoOOH nanosheets-coated g-C
doi: 10.1016/j.snb.2019.127631
Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S et al (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459. https://doi.org/10.1021/ja028650l
doi: 10.1021/ja028650l
pubmed: 12683815
Zeng RJ, Luo ZB, Su LS, Zhang LJ, Tang DP, Niessner R et al (2019) Palindromic molecular beacon based Z-scheme BiOCI-Au-CdS photoelectrochemical biodetection. Anal Chem 91:2447–2454. https://doi.org/10.1021/acs.analchem.8b05265
doi: 10.1021/acs.analchem.8b05265
pubmed: 30609356
Wang Y, Bian F, Qin XF, Wang QQ (2018) Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO
doi: 10.1007/s00604-018-2711-z
Liu Q, Lu H, Shi ZW, Wu FL, Guo J, Deng KM et al (2014) 2D ZnIn
doi: 10.1021/am505015j
pubmed: 25225738
Martindale BCM, Hutton GAM, Caputo CA, Reisner E (2015) Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc 137:6018–6025. https://doi.org/10.1021/jacs.5b01650
doi: 10.1021/jacs.5b01650
pubmed: 25864839
Suteewong T, Sai H, Bradbury M, Estroff LA, Gruner SM, Wiesner U (2012) Synthesis and formation mechanism of aminated mesoporous silica nanoparticles. Chem Mater 24:3895–3905. https://doi.org/10.1021/cm301857e
doi: 10.1021/cm301857e
Li X, Zhou YL, Xu Y, Xu HJ, Wang MH, Yin HS et al (2016) A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride. Anal Chim Acta 934:36–43. https://doi.org/10.1016/j.aca.2016.06.024
doi: 10.1016/j.aca.2016.06.024
pubmed: 27506341
Wang BH, Qin Y, Tan WS, Tao YX, Kong Y (2017) Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim Acta 241:1–9. https://doi.org/10.1016/j.electacta.2017.04.120
doi: 10.1016/j.electacta.2017.04.120
Sun C, Liu L, Guo C, Shen Y, Peng Y, Xie Q (2022) Photoelectrochemical biosensing of leukemia gene based on CdS/AuNPs/FeOOH Z-scheme heterojunction and a facile reflective device. Sens Actuators, B Chem 362:131795. https://doi.org/10.1016/j.snb.2022.131795
doi: 10.1016/j.snb.2022.131795
Rafigh SM, Heydarinasab A (2017) Mesoporous chitosan-SiO
doi: 10.1021/acssuschemeng.7b02388
Lim WY, Goh CH, Thevarajah TM, Goh BT, Khor SM (2020) Using SERS-based microfluidic paper-based device (mu PAD) for calibration-free quantitative measurement of AMI cardiac biomarkers. Biosens Bioelectron 147:111792. https://doi.org/10.1016/j.bios.2019.111792
doi: 10.1016/j.bios.2019.111792
pubmed: 31678828