UltrARsound: in situ visualization of live ultrasound images using HoloLens 2.
Augmented reality
Retroreflective spheres
Tracking
Ultrasound guidance
Journal
International journal of computer assisted radiology and surgery
ISSN: 1861-6429
Titre abrégé: Int J Comput Assist Radiol Surg
Pays: Germany
ID NLM: 101499225
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
13
01
2022
accepted:
31
05
2022
pubmed:
2
7
2022
medline:
30
9
2022
entrez:
1
7
2022
Statut:
ppublish
Résumé
Augmented Reality (AR) has the potential to simplify ultrasound (US) examinations which usually require a skilled and experienced sonographer to mentally align narrow 2D cross-sectional US images in the 3D anatomy of the patient. This work describes and evaluates a novel approach to track retroreflective spheres attached to the US probe using an inside-out technique with the AR glasses HoloLens 2. Finally, live US images are displayed in situ on the imaged anatomy. The Unity application UltrARsound performs spatial tracking of the US probe and attached retroreflective markers using the depth camera integrated into the AR glasses-thus eliminating the need for an external tracking system. Additionally, a Kalman filter is implemented to improve the noisy measurements of the camera. US images are streamed wirelessly via the PLUS toolkit to HoloLens 2. The technical evaluation comprises static and dynamic tracking accuracy, frequency and latency of displayed images. Tracking is performed with a median accuracy of 1.98 mm/1.81[Formula: see text] for the static setting when using the Kalman filter. In a dynamic scenario, the median error was 2.81 mm/1.70[Formula: see text]. The tracking frequency is currently limited to 20 Hz. 83% of the displayed US images had a latency lower than 16 ms. In this work, we showed that spatial tracking of retroreflective spheres with the depth camera of HoloLens 2 is feasible, achieving a promising accuracy for in situ visualization of live US images. For tracking, no additional hardware nor modifications to HoloLens 2 are required making it a cheap and easy-to-use approach. Moreover, a minimal latency of displayed images enables a real-time perception for the sonographer.
Identifiants
pubmed: 35776399
doi: 10.1007/s11548-022-02695-z
pii: 10.1007/s11548-022-02695-z
pmc: PMC9515035
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2081-2091Informations de copyright
© 2022. The Author(s).
Références
Eur Radiol Exp. 2020 Feb 4;4(1):7
pubmed: 32020366
Healthc Technol Lett. 2017 Sep 14;4(5):184-187
pubmed: 29184662
Sensors (Basel). 2021 Jan 08;21(2):
pubmed: 33430149
Innov Surg Sci. 2018 Oct 04;3(3):167-177
pubmed: 31579781
Int J Med Robot. 2009 Dec;5(4):423-34
pubmed: 19621334
Surg Innov. 2019 Feb;26(1):86-94
pubmed: 30261829
IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700
pubmed: 21869429
Int J Comput Assist Radiol Surg. 2022 Feb;17(2):385-391
pubmed: 34817764
Anesthesiology. 2015 Nov;123(5):1188-97
pubmed: 26397142
Bioengineering (Basel). 2021 Sep 25;8(10):
pubmed: 34677204
Ann Fam Med. 2019 Jan;17(1):61-69
pubmed: 30670398
Sensors (Basel). 2020 Feb 14;20(4):
pubmed: 32074980
Int J Comput Assist Radiol Surg. 2019 Jul;14(7):1157-1165
pubmed: 30993519
Healthc Technol Lett. 2018 Sep 14;5(5):162-166
pubmed: 30464847
J Cardiothorac Vasc Anesth. 2018 Jun;32(3):1363-1367
pubmed: 29452879
Int J Comput Assist Radiol Surg. 2020 Nov;15(11):1895-1905
pubmed: 32725398
Arch Orthop Trauma Surg. 2021 Sep;141(9):1447-1453
pubmed: 32715400
IEEE Trans Biomed Eng. 2014 Oct;61(10):2527-37
pubmed: 24833412