Estimation of adherence to medication treatment in presence of censoring.
censoring
electronic monitors
generalized estimating equations models
implementation
longitudinal data
medication adherence
persistence
pharmionics, survival analysis
Journal
British journal of clinical pharmacology
ISSN: 1365-2125
Titre abrégé: Br J Clin Pharmacol
Pays: England
ID NLM: 7503323
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
revised:
10
06
2022
received:
05
11
2021
accepted:
16
06
2022
medline:
19
6
2023
pubmed:
2
7
2022
entrez:
1
7
2022
Statut:
ppublish
Résumé
The purpose of this study is to provide a theoretical framework for the analysis of medication adherence based on longitudinal data from electronic medication monitors and to suggest methods for unbiased estimation of the effect of time and covariates on adherence. After defining the statistical summaries involved in adherence analyses and the assumptions necessary for their estimation, we address the issue of bias encountered when adherence is estimated on censored data. We suggest 2 unbiased methods to estimate adherence: (i) indirect combining implementation and persistence; and (ii) based on weights, allowing estimation of the effect of time and covariates on adherence via generalized estimating equations models. We applied the proposed methods to investigate the effect of sex on adherence in a sample of 43 oncology patients followed 1 year. Implementation was higher for men than for women at baseline (98.8 vs. 97.5%, odds ratio [OR] 2.08, 95% confidence interval [CI]: 1.00-4.35), whereas the relationship was reversed at 1 year (94.5 vs. 96.4%, OR 0.65, 95%CI: 0.28-1.52). Adherence declined faster in men, with year-end values of 46.3% for men and 92.2% for women (OR 0.07, 95%CI: 0.02-0.26). Estimation of adherence is a complex statistical issue with longitudinal and duration data, possibly censored, interleaving. This study provides a theoretical framework and suggests methods for unbiased estimation of adherence as a function of time and covariates. This allows the effect of an intervention to be estimated in clinical trials, and helps healthcare providers reframe adherence programmes to address covariates such as sex.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1928-1937Informations de copyright
© 2022 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Références
Urquhart J. The electronic medication event monitor. Lessons Pharmacother Clin Pharmacokinet. 1997;32(5):345-356. doi:10.2165/00003088-199732050-00001
Vrijens B, Goetghebeur R, De Klerk R, Rode R, Mayer S, Urquhart J. Modeling the association between adherence and viral load in HIV-infected patients. Stat Med. 2005;24(17):2719-2731. doi:10.1002/sim.2130
Krummenacher I, Cavassini M, Bugnon O, Spirig R, Schneider MP. Antiretroviral adherence program in HIV patients: a feasibility study in the Swiss HIV Cohort Study. Pharm World Sci. 2010;32(6):776-786. doi:10.1007/s11096-010-9437-2
Blaschke TF, Osterberg L, Vrijens B, Urquhart J. Adherence to medications: insights arising from studies on the unreliable link between prescribed and actual drug dosing histories. Annu Rev Pharmacol Toxicol. 2012;52(1):275-301. doi:10.1146/annurev-pharmtox-011711-113247
Lehmann A, Aslani P, Ahmed R, et al. Assessing medication adherence: options to consider. Int J Clin Pharmacol. 2014;36(1):55-69. doi:10.1007/s11096-013-9865-x
Nguyen TMU, Caze AL, Cottrell N. What are validated self-report adherence scales really measuring? a systematic review. Br J ClinPharmacol. 2014;77(3):427-445. doi:10.1111/bcp.12194
Lelubre M, Kamal S, Genre N, et al. Interdisciplinary medication adherence program: the example of a university community pharmacy in Switzerland. Biomed Res Int. 2015;2015(103546):1-10. doi:10.1155/2015/103546
Vrijens B, Geest SD, Hughes DA, et al. A new taxonomy for describing and defining adherence to medications. Br J Clin Pharmacol. 2012;73(5):691-670. doi:10.1111/j.1365-2125.2012.04167.x
Schneider M, Jeanneret LA, Chevaux B, et al. A novel approach to better characterize medication adherence in oral anticancer treatments. Front Pharmacol. 2019;9:1567. doi:10.3389/fphar.2018.01567
Vrijens B, Vincze G, Kristanto P, Urquhart J, Burnier M. Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. BMJ. 2008;336(7653):114-117. doi:10.1136/bmj.39553.670231.25
Misdrahi D, Tessier A, Husky M, et al. Evaluation of adherence patterns in schizophrenia using electronic monitoring (MEMS): A six-month post-discharge prospective study. Schisophrenia Reasearch. 2018;193:114-118. doi:10.1016/j.schres.2017.06.026
Dotta-Celio J, Alatri A, Locatelli I, et al. Patient adherence to rivaroxaban in deep vein thrombosis, a cohort study in Switterland: quantitative results. Int J Clin Pharmacol. 2019;41(6):1-9. doi:10.1007/s11096-019-00928-x
Kamal S, Locatelli I, Wandeler G, et al. The Presence of HIV Associated Neurocognitive Disorders (HAND) is associated with a lower adherence to combined Antiretroviral Treatment. Open Forum Infect Dis. 2017;4(2). doi:10.1093/ofid/ofx070
Bourdin A, Schneider P, Locatelli I, Schluep M, Bugnon O, Berger J. Longitudinal analysis of safety and medication adherence of patients in the Fingolimod patient support program: a real-world observational study. Sci Rep. 2021;11(1):4107. doi:10.1038/s41598-021-83220-1
Kuypers DRJ, Peeters PC, Sennesael JJ, et al. Improved Adherence to Tacrolimus Once-Daily Formulation in Renal Recipients: A Randomized Controlled Trial Using Electronic Monitoring. Clin Trans Res. 2012;95(2):333-340. doi:10.1097/TP.0b013e3182725532
Dobbels F, De Bleser L, Berben L, Kristanto P, Dupont L, Nevens F. Efficacy of a medication adherence enhancing intervention in transplantation: The MAESTRO-Tx trial. J Heart Lung Transplant. 2017;36(5):499-508. doi:10.1016/j.healun.2017.01.007
Bandiera C, Celio J, Locatelli I, et al. Interprofessional medication adherence programme for patients with diabetic kidney disease: protocol for a randomized controlled and qualitative study (PANDIA-IRIS). JMIR Res Protoc. 2020;10(3). doi:10.2196/25966
Bandiera C, Cardoso E, Locatelli I, et al. Optimizing oral targeted anticancer therapies (OpTAT) study for patients with solid cancer: protocol for a randomized controlled medication adherence program along with a systematic collection and modeling of pharmacokinetic and pharmacodynamic data. JMIR Res Protoc. 2021;10(6):e30090. doi:10.2196/30090
De Geest S, Zullig LL, Dunbar-Jacob J, Hughes D, Wilson IB, Vrijens B. Improving medication adherence research reporting: ESPACOMP Medication Adherence Reporting Guideline (EMERGE). Ann Intern Med. 2018;169(1):30-35. doi:10.7326/M18-0543
Hu C, Sale ME. A joint Model for Nonlinear Longitudinal Data with Informative Dropout. J Pharmacokinet Pharmacodyn. 2003;30(1):83-103. doi:10.1023/A:1023249510224
Hogan JW, Roy J, Korkontzelou C. TUTORIAL IN BIOSTATISTICS. Handling drop-out in longitudinal studies. Stat Med. 2004;23(9):1455-1497. doi:10.1002/sim.1728
Li Q, Su L. Accommodating informative dropout and death: a joint modelling approach for longitudinal and semicompeting risk data. Appl Stat. 2018;67(1):145-163. doi:10.1111/rssc.12210
Little RJA, Rubin DB. Statistical Analysis with Missing Data. New York: Wiley; 1987.
Hogan JW, Laird NM. Model based approaches to analyzing incomplete longitudinal and failure time data. Stat Med. 1997;16(3):259-272. doi:10.1002/(SICI)1097-0258(19970215)16:3%3C259::AID-SIM484%3E3.0.CO;2-S