Interaction effect of blood glucose and pressure on the risk of chronic kidney disease: a population-based prospective cohort study.
Blood glucose
Blood pressure
Chronic kidney disease
Interaction
Prospective cohort study
Journal
Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
24
11
2021
accepted:
23
05
2022
pubmed:
2
7
2022
medline:
29
7
2022
entrez:
1
7
2022
Statut:
ppublish
Résumé
To evaluate the interaction effect of blood glucose and blood pressure on the risk of chronic kidney disease (CKD). 31,165 subjects were selected without CKD at baseline and had completed the first follow-up from "Jinchang cohort". Cox regression model and restricted cubic splines functions were used to evaluate the effects of blood glucose or pressure on the incidence of CKD and dose-response relationship after adjusting for confounding covariates. Synergic effect was assessed by the multiplicative or additive interaction scale. Among 31,165 subjects, 1307 new-onset CKD were observed during 68905.78 person-years follow-up, and the incidence density was 18.97 per 1000 person-years. The risk of CKD gradually increased with the increase of blood pressure in diabetes, pre-diabetes and normal groups (P Blood glucose and pressure were independent risk factors in incidence of CKD, but there was only a negative multiplicative interaction between hypertension and diabetes, but no additive interaction effect between them.
Identifiants
pubmed: 35778587
doi: 10.1007/s12020-022-03094-9
pii: 10.1007/s12020-022-03094-9
doi:
Substances chimiques
Blood Glucose
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
252-261Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
N.R. Hill, S.T. Fatoba, J.L. Oke et al. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PloS one 11(7), e0158765 (2016)
pubmed: 27383068
pmcid: 4934905
doi: 10.1371/journal.pone.0158765
R. Lozano, M. Naghavi, K. Foreman et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859), 2095–2128 (2012)
pubmed: 23245604
doi: 10.1016/S0140-6736(12)61728-0
L. Zhang, F. Wang, L. Wang et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379(9818), 815–822 (2012)
pubmed: 22386035
doi: 10.1016/S0140-6736(12)60033-6
C.E. Koro, B.H. Lee, S.J. Bowlin, Antidiabetic medication use and prevalence of chronic kidney disease among patients with type 2 diabetes mellitus in the United States. Clin. Therapeutics 31(11), 2608–2617 (2009)
doi: 10.1016/j.clinthera.2009.10.020
K. Al-Rubeaan, A.M. Youssef, S.N. Subhani et al. Diabetic nephropathy and its risk factors in a society with a type 2 diabetes epidemic: a Saudi National Diabetes Registry-based study. PloS one 9(2), e88956 (2014)
pubmed: 24586457
pmcid: 3931705
doi: 10.1371/journal.pone.0088956
P.A. Sarafidis, S. Li, S.C. Chen et al. Hypertension awareness, treatment, and control in chronic kidney disease. Am. J. Med. 121(4), 332–340 (2008)
pubmed: 18374693
doi: 10.1016/j.amjmed.2007.11.025
J.M. Pascual, E. Rodilla, C. Gonzalez et al. Long-term impact of systolic blood pressure and glycemia on the development of microalbuminuria in essential hypertension. Hypertension 45(6), 1125–1130 (2005)
pubmed: 15897369
doi: 10.1161/01.HYP.0000167151.52825.11
O. Torffvit, C.D. Agardh, The impact of metabolic and blood pressure control on incidence and progression of nephropathy. A 10-year study of 385 type 2 diabetic patients. J. Diabet Complicat. 15(6), 307–313 (2001)
doi: 10.1016/S1056-8727(01)00176-3
J. Liu, D. Zhao, J. Liu et al. Prevalence of diabetes mellitus in outpatients with essential hypertension in China: a cross-sectional study. BMJ open 3(11), e003798 (2013)
pubmed: 24259390
pmcid: 3840347
doi: 10.1136/bmjopen-2013-003798
A.D. Colosia, R. Palencia, S. Khan, Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabet. Metab. Syndr. Obes. 6, 327–338 (2013)
doi: 10.2147/DMSO.S51325
Z. Wang, J.M. do Carmo, N. Aberdein et al. Synergistic Interaction of Hypertension and Diabetes in Promoting Kidney Injury and the Role of Endoplasmic Reticulum Stress. Hypertension 69(5), 879–891 (2017)
pubmed: 28348018
doi: 10.1161/HYPERTENSIONAHA.116.08560
W. Shi, H. Wang, Y. Zhou et al. Synergistic interaction of hypertension and diabetes on chronic kidney disease: Insights from the National Health and Nutrition Examination Survey 1999-2006. J. Diabet Complicat. 34(2), 107447 (2020)
doi: 10.1016/j.jdiacomp.2019.107447
S. Erfanpoor, K. Etemad, S. Kazempour et al. Diabetes, Hypertension, and Incidence of Chronic Kidney Disease: Is There any Multiplicative or Additive Interaction? Int. J. Endocrinol. Metab. 19(1), e101061 (2021)
pubmed: 33815514
Y. Bai, A. Yang, H. Pu et al. Cohort Profile: The China Metal-Exposed Workers Cohort Study (Jinchang Cohort). Int. J. Epidemiol. 46(4), 1095–1096e (2017)
pubmed: 27836916
N.K. Foundation, KDOQI Clinical Practice Guideline for Hemodialysis Adequacy: 2015 update. Am. J. Kidney Dis.: Off. J. Natl Kidney Found. 66(5), 884–930 (2015)
doi: 10.1053/j.ajkd.2015.07.015
A.S. Levey, J. Coresh, Chronic kidney disease. Lancet 379(9811), 165–180 (2012)
pubmed: 21840587
doi: 10.1016/S0140-6736(11)60178-5
T. A. D. Association. 2, Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 41(Suppl 1), S13–s27 (2018)
L.S. Liu, 2010 Chinese guidelines for the management of hypertension. Chin. J. Hypertens. 19(08), 701–743 (2011)
L. Desquilbet, F. Mariotti, Dose-response analyses using restricted cubic spline functions in public health research. Stat. Med. 29(9), 1037–1057 (2010)
pubmed: 20087875
T. Andersson, L. Alfredsson, H. Källberg et al. Calculating measures of biological interaction. Eur. J. Epidemiol. 20(7), 575–579 (2005)
pubmed: 16119429
doi: 10.1007/s10654-005-7835-x
R. de Mutsert, K.J. Jager, C. Zoccali et al. The effect of joint exposures: examining the presence of interaction. Kidney Int. 75(7), 677–681 (2009)
pubmed: 19190674
doi: 10.1038/ki.2008.645
R.W. Schrier, R.O. Estacio, A. Esler et al. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. 61(3), 1086–1097 (2002)
pubmed: 11849464
doi: 10.1046/j.1523-1755.2002.00213.x
P.A. James, S. Oparil, B.L. Carter et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). Jama 311(5), 507–520 (2014)
pubmed: 24352797
doi: 10.1001/jama.2013.284427
N.B. Shulman, C.E. Ford, W.D. Hall et al. Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension 13(5 Suppl), I80–I93 (1989)
pubmed: 2490833
H.M. Perry Jr, J.P. Miller, J.R. Fornoff et al. Early predictors of 15-year end-stage renal disease in hypertensive patients. Hypertension 25(4 Pt 1), 587–594 (1995)
pubmed: 7721402
doi: 10.1161/01.HYP.25.4.587
W.G. Walker, J.D. Neaton, J.A. Cutler et al. Renal function change in hypertensive members of the Multiple Risk Factor Intervention Trial. Racial and treatment effects. The MRFIT Research Group. Jama 268(21), 3085–3091 (1992)
pubmed: 1433739
doi: 10.1001/jama.1992.03490210067037
P. Muntner, A. Anderson, J. Charleston et al. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis.55(3), 441–451 (2010)
pubmed: 19962808
doi: 10.1053/j.ajkd.2009.09.014
A.J. Collins, R.N. Foley, B. Chavers et al. ‘United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am. J. Kidney Dis. 59(1 Suppl 1), A7, e1–420 (2012)
A.K. Bidani, A.J. Polichnowski, R. Loutzenhiser et al. Renal microvascular dysfunction, hypertension and CKD progression. Curr. Opin. Nephrol. Hypertension 22(1), 1–9 (2013)
doi: 10.1097/MNH.0b013e32835b36c1
H.A. Koomans, J.C. Roos, P. Boer et al. Salt sensitivity of blood pressure in chronic renal failure. Evidence for renal control of body fluid distribution in man. Hypertension 4(2), 190–197 (1982)
pubmed: 7040224
doi: 10.1161/01.HYP.4.2.190
E. Pimenta, K.K. Gaddam, S. Oparil et al. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial. Hypertension 54(3), 475–481 (2009)
pubmed: 19620517
doi: 10.1161/HYPERTENSIONAHA.109.131235
K. Iseki, Y. Ikemiya, K. Kinjo et al. Prevalence of high fasting plasma glucose and risk of developing end-stage renal disease in screened subjects in Okinawa, Japan. Clin. Exp. Nephrol. 8(3), 250–256 (2004)
pubmed: 15480903
doi: 10.1007/s10157-004-0293-z
X. Wang, F. Fan, J. Jia et al. Association of different glucose traits with kidney function decline risk in a Chinese community-based population without chronic kidney disease. Ther. Clin. Risk Manag 14, 1725–1734 (2018)
pubmed: 30271157
pmcid: 6147541
doi: 10.2147/TCRM.S167233
P. Khajehdehi, L. Malekmakan, M. Pakfetrat et al. Prevalence of chronic kidney disease and its contributing risk factors in southern Iran: a cross-sectional adult population-based study. Iran. J. kidney Dis. 8(2), 109–115 (2014)
pubmed: 24685733
K. Yamagata, K. Ishida, T. Sairenchi et al. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int. 71(2), 159–166 (2007)
pubmed: 17136030
doi: 10.1038/sj.ki.5002017
E.I. Ekinci, G. Jerums, A. Skene et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabet. Care 36(11), 3620–3626 (2013)
doi: 10.2337/dc12-2572
R. Ikee, Y. Hamasaki, M. Oka et al. Glucose metabolism, insulin resistance, and renal pathology in non-diabetic chronic kidney disease. Nephron Clin. Pract. 108(2), c163–c168 (2008)
pubmed: 18259103
doi: 10.1159/000115329
M. Nangaku, Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern. Med. 43(1), 9–17 (2004)
pubmed: 14964574
doi: 10.2169/internalmedicine.43.9
D.H. Kang, J. Kanellis, C. Hugo et al. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol. 13(3), 806–816 (2002)
pubmed: 11856789
doi: 10.1681/ASN.V133806
R. Michishita, T. Matsuda, S. Kawakami et al. Hypertension and hyperglycemia and the combination thereof enhances the incidence of chronic kidney disease (CKD) in middle-aged and older males. Clin. Exp. Hypertens. 39(7), 645–654 (2017)
pubmed: 28590145
doi: 10.1080/10641963.2017.1306541
E.L. Schiffrin, M.L. Lipman, J.F. Mann, Chronic kidney disease: effects on the cardiovascular system. Circulation 116(1), 85–97 (2007)
pubmed: 17606856
doi: 10.1161/CIRCULATIONAHA.106.678342
N. Kashihara, Y. Haruna, V.K. Kondeti et al. Oxidative stress in diabetic nephropathy. Curr. Med. Chem. 17(34), 4256–4269 (2010)
pubmed: 20939814
pmcid: 3708695
doi: 10.2174/092986710793348581
M.J. Knol, T.J. VanderWeele, Recommendations for presenting analyses of effect modification and interaction. Int. J. Epidemiol. 41(2), 514–520 (2012)
pubmed: 22253321
pmcid: 3324457
doi: 10.1093/ije/dyr218
K.J. Rothman, S. Greenland, A.M. Walker, Concepts of interaction. Am. J. Epidemiol. 112(4), 467–470 (1980)
pubmed: 7424895
doi: 10.1093/oxfordjournals.aje.a113015