Differential epithelial and stromal LGR5 expression in ovarian carcinogenesis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 07 2022
01 07 2022
Historique:
received:
21
03
2022
accepted:
21
06
2022
entrez:
1
7
2022
pubmed:
2
7
2022
medline:
7
7
2022
Statut:
epublish
Résumé
Lgr5 has been identified as a marker of the stem/progenitor cells in the murine ovary and oviduct by lineage tracing. However, little is known regarding LGR5 expression or its functional significance in human ovary tissues. Here, using RNA in situ hybridization and/or immunohistochemistry, we thoroughly investigated LGR5 expression in normal human ovaries, fallopian tubes and various ovarian tumors. We discovered that LGR5 expression is negligible in the human ovary surface epithelium, whereas ovarian stromal cells normally express low levels of LGR5. Remarkably, fallopian tube epithelium, inclusion cysts and serous cystadenomas with a Müllerian phenotype expressed high levels of LGR5, and LGR5 expression was restricted to PAX8
Identifiants
pubmed: 35778589
doi: 10.1038/s41598-022-15234-2
pii: 10.1038/s41598-022-15234-2
pmc: PMC9249864
doi:
Substances chimiques
LGR5 protein, human
0
Lgr5 protein, mouse
0
Receptors, G-Protein-Coupled
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11200Informations de copyright
© 2022. The Author(s).
Références
Prat, J. New insights into ovarian cancer pathology. Ann. Oncol. 23, x111–x117 (2012).
pubmed: 22987944
doi: 10.1093/annonc/mds300
Dinkelspiel, H. E. et al. Long-term mortality among women with epithelial ovarian cancer. Gynecol. Oncol. 138, 421–428 (2015).
pubmed: 26050923
pmcid: 4522327
doi: 10.1016/j.ygyno.2015.06.005
Lheureux, S., Gourley, C., Vergote, I. & Oza, A. M. Epithelial ovarian cancer. The Lancet 393, 1240–1253 (2019).
doi: 10.1016/S0140-6736(18)32552-2
Reid, B. M., Permuth, J. B. & Sellers, T. A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med. 14, 9 (2017).
pubmed: 28443200
pmcid: 5365187
doi: 10.20892/j.issn.2095-3941.2016.0084
Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 71, 209–249 (2021).
Gilks, C. B. & Prat, J. Ovarian carcinoma pathology and genetics: recent advances. Hum. Pathol. 40, 1213–1223 (2009).
pubmed: 19552940
doi: 10.1016/j.humpath.2009.04.017
Shih, I.-M., Wang, Y. & Wang, T.-L. The origin of ovarian cancer species and precancerous landscape. Am. J. Pathol. 191, 26–39 (2021).
pubmed: 33011111
pmcid: 7786078
doi: 10.1016/j.ajpath.2020.09.006
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).
pubmed: 17934449
doi: 10.1038/nature06196
Barker, N. et al. Lgr5+ ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).
pubmed: 20085740
doi: 10.1016/j.stem.2009.11.013
Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291 (2008).
pubmed: 18849992
doi: 10.1038/ng.239
Plaks, V. et al. Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Rep. 3, 70–78 (2013).
pubmed: 23352663
pmcid: 3563842
doi: 10.1016/j.celrep.2012.12.017
Barker, N. et al. Lgr5+ ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540–552 (2012).
pubmed: 22999937
doi: 10.1016/j.celrep.2012.08.018
Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).
pubmed: 23354049
pmcid: 3634804
doi: 10.1038/nature11826
Leushacke, M. et al. Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nat. Cell Biol. 19, 774–786 (2017).
pubmed: 28581476
doi: 10.1038/ncb3541
Cao, W. et al. LGR5 marks targetable tumor-initiating cells in mouse liver cancer. Nat. Commun. 11, 1–16 (2020).
doi: 10.1038/s41467-020-15846-0
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).
pubmed: 19092804
doi: 10.1038/nature07602
Shimokawa, M. et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545, 187–192 (2017).
pubmed: 28355176
doi: 10.1038/nature22081
De Sousa E Melo, F. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).
Ng, A. et al. Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nat. Cell Biol. 16, 745–757 (2014).
pubmed: 24997521
doi: 10.1038/ncb3000
Flesken-Nikitin, A. et al. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature 495, 241–245 (2013).
pubmed: 23467088
pmcid: 3982379
doi: 10.1038/nature11979
Amsterdam, A. et al. Localization of the stem cell markers LGR5 and Nanog in the normal and the cancerous human ovary and their inter-relationship. Acta Histochem. 115, 330–338 (2013).
pubmed: 23092806
doi: 10.1016/j.acthis.2012.09.004
Lee, Y. et al. Advances in the recognition of tubal intraepithelial carcinoma: Applications to cancer screening and the pathogenesis of ovarian cancer. Adv. Anat. Pathol. 13, 1–7 (2006).
pubmed: 16462151
doi: 10.1097/01.pap.0000201826.46978.e5
Kim, S. I. et al. Proteomic discovery of biomarkers to predict prognosis of high-grade serous ovarian carcinoma. Cancers 12, 790 (2020).
pmcid: 7226362
doi: 10.3390/cancers12040790
Jang, B. G. et al. Expression profile of LGR5 and its prognostic significance in colorectal cancer progression. Am. J. Pathol. 188, 2236–2250 (2018).
pubmed: 30036518
doi: 10.1016/j.ajpath.2018.06.012
Kim, H. et al. SLUG is a key regulator of epithelial-mesenchymal transition in pleomorphic adenoma. Lab. Investig., 1–10 (2022).
Vang, R., Shih, I.-M. & Kurman, R. J. Ovarian low-grade and high-grade serous carcinoma: Pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv. Anat. Pathol. 16, 267 (2009).
pubmed: 19700937
pmcid: 2745605
doi: 10.1097/PAP.0b013e3181b4fffa
Kurman, R. J. & Shih, I.-M. The origin and pathogenesis of epithelial ovarian cancer—A proposed unifying theory. Am. J. Surg. Pathol. 34, 433 (2010).
pubmed: 20154587
pmcid: 2841791
doi: 10.1097/PAS.0b013e3181cf3d79
Győrffy, B., Lánczky, A. & Szállási, Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr. Relat. Cancer 19, 197–208 (2012).
pubmed: 22277193
doi: 10.1530/ERC-11-0329
Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).
pubmed: 21983963
doi: 10.1038/nature10573
Wang, D. et al. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517, 81–84 (2015).
pubmed: 25327250
doi: 10.1038/nature13851
Lee, H. J. et al. Expression of LGR5 in mammary myoepithelial cells and in triple-negative breast cancers. Sci. Rep. 11, 1–11 (2021).
Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).
pubmed: 24045232
pmcid: 3801438
doi: 10.1038/emboj.2013.204
Seishima, R. et al. Neonatal Wnt-dependent Lgr5 positive stem cells are essential for uterine gland development. Nat. Commun. 10, 1–17 (2019).
doi: 10.1038/s41467-019-13363-3
Jang, B. G., Lee, B. L. & Kim, W. H. Distribution of LGR5+ cells and associated implications during the early stage of gastric tumorigenesis. PLoS ONE 8, e82390 (2013).
pubmed: 24340024
pmcid: 3858308
doi: 10.1371/journal.pone.0082390
Kim, J. et al. Cell origins of high-grade serous ovarian cancer. Cancers 10, 433 (2018).
pmcid: 6267333
doi: 10.3390/cancers10110433
Park, K. J. et al. Observations on the origin of ovarian cortical inclusion cysts in women undergoing risk-reducing salpingo-oophorectomy. Histopathology 72, 766–776 (2018).
pubmed: 29197096
pmcid: 5849505
doi: 10.1111/his.13444
Tempest, N., Baker, A., Wright, N. & Hapangama, D. Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche?. Hum. Reprod. 33, 1052–1062 (2018).
pubmed: 29648645
pmcid: 5972618
doi: 10.1093/humrep/dey083
Perets, R. et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca; Tp53; Pten models. Cancer Cell 24, 751–765 (2013).
pubmed: 24332043
pmcid: 3917315
doi: 10.1016/j.ccr.2013.10.013
Yamamoto, Y. et al. In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells. J. Pathol. 238, 519–530 (2016).
pubmed: 26415052
pmcid: 4895925
doi: 10.1002/path.4649
Jang, B. G., Lee, B. L. & Kim, W. H. Prognostic significance of leucine-rich-repeat-containing G-protein-coupled receptor 5, an intestinal stem cell marker, in gastric carcinomas. Gastric Cancer 19, 767–777 (2016).
pubmed: 26386561
doi: 10.1007/s10120-015-0543-7
Fujisawa, M. et al. Ovarian stromal cells as a source of cancer-associated fibroblasts in human epithelial ovarian cancer: a histopathological study. PLoS ONE 13, e0205494 (2018).
pubmed: 30304016
pmcid: 6179287
doi: 10.1371/journal.pone.0205494
Blanco, L. Z. Jr. et al. Steroid hormone synthesis by the ovarian stroma surrounding epithelial ovarian tumors: a potential mechanism in ovarian tumorigenesis. Mod. Pathol. 30, 563–576 (2017).
pubmed: 28059101
doi: 10.1038/modpathol.2016.219
Lee, J.-H. et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell 170, 1149–1163. e1112 (2017).
Xu, L., Lin, W., Wen, L. & Li, G. Lgr5 in cancer biology: Functional identification of Lgr5 in cancer progression and potential opportunities for novel therapy. Stem Cell. Res. Ther. 10, 1–9 (2019).
doi: 10.1186/s13287-019-1288-8
Sun, Y., Jia, X. & Wu, X. High expressions of Lgr5 and ALDH1 in primary epithelial ovarian cancer correlate with advanced tumor stage and grade as well as poor prognosis of the patients. Gynecol. Obstet. Investig. 81, 162–168 (2016).
doi: 10.1159/000431222
Liu, W. et al. LGR 5 promotes epithelial ovarian cancer proliferation, metastasis, and epithelial–mesenchymal transition through the Notch1 signaling pathway. Cancer Med. 7, 3132–3142 (2018).
pmcid: 6051213
doi: 10.1002/cam4.1485
Sun, X., Jackson, L., Dey, S. K. & Daikoku, T. In pursuit of leucine-rich repeat-containing G protein-coupled receptor-5 regulation and function in the uterus. Endocrinology 150, 5065–5073 (2009).
pubmed: 19797400
pmcid: 2775985
doi: 10.1210/en.2009-0690
Domcke, S., Sinha, R., Levine, D. A., Sander, C. & Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4, 1–10 (2013).
doi: 10.1038/ncomms3126
Anglesio, M. S. et al. Type-specific cell line models for type-specific ovarian cancer research. PLoS ONE 8, e72162 (2013).
pubmed: 24023729
pmcid: 3762837
doi: 10.1371/journal.pone.0072162
Beaufort, C. M. et al. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS ONE 9, e103988 (2014).
pubmed: 25230021
pmcid: 4167545
doi: 10.1371/journal.pone.0103988
Tudrej, P. et al. Establishment and characterization of the novel high-grade serous ovarian cancer cell line OVPA8. Int. J. Mol. Sci. 19, 2080 (2018).
pmcid: 6073376
doi: 10.3390/ijms19072080
Yamamoto, Y. et al. Overexpression of orphan G-protein–coupled receptor, Gpr49, in human hepatocellular carcinomas with β-catenin mutations. Hepatology 37, 528–533 (2003).
pubmed: 12601349
doi: 10.1053/jhep.2003.50029
Arend, R. C., Londoño-Joshi, A. I., Straughn, J. M. Jr. & Buchsbaum, D. J. The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecol. Oncol. 131, 772–779 (2013).
pubmed: 24125749
doi: 10.1016/j.ygyno.2013.09.034