RanGTPase links nucleo-cytoplasmic transport to the recruitment of cargoes into small extracellular vesicles.
Exosome
Exportin1/CRM1
Intercellular communication
Nuclear export signal
RanGTPase
Small extracellular vesicles
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
02 Jul 2022
02 Jul 2022
Historique:
received:
12
04
2022
accepted:
13
06
2022
revised:
09
06
2022
entrez:
2
7
2022
pubmed:
3
7
2022
medline:
7
7
2022
Statut:
epublish
Résumé
Small extracellular vesicle (sEV)-mediated intercellular communication regulates multiple aspects of growth and development in multicellular organisms. However, the mechanism underlying cargo recruitment into sEVs is currently unclear. We show that the key nucleo-cytoplasmic transport (NCT) protein-RanGTPase, in its GTP-bound form (RanGTP), is enriched in sEVs secreted by mammalian cells. This recruitment of RanGTP into sEVs depends on the export receptor CRM1 (also called XPO1). The recruitment of GAPDH, a candidate cargo protein, into sEVs is regulated by the RanGTP-CRM1axis in a nuclear export signal (NES)-dependent manner. Perturbation of NCT through overexpression or depletion of nuclear transport components affected the recruitment of Ran, CRM1 and GAPDH into sEVs. Our studies, thus, suggest a link between NCT, particularly the Ran-CRM1 axis, and recruitment of NES-containing cargoes into the sEVs. Collectively, these findings implicate RanGTPase as a link between NCT and sEV mediated intercellular communication.
Identifiants
pubmed: 35779171
doi: 10.1007/s00018-022-04422-y
pii: 10.1007/s00018-022-04422-y
doi:
Substances chimiques
Nuclear Export Signals
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
392Subventions
Organisme : Department of Biotechnology, Ministry of Science and Technology, India
ID : BT/PR32331/BRB/10/1774/2019
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208
doi: 10.1152/physrev.2001.81.1.153
Joseph J (2006) Ran at glance. J Cell Sci 119:3481–3484. https://doi.org/10.1242/jcs.03071
doi: 10.1242/jcs.03071
pubmed: 16931595
Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594. https://doi.org/10.1128/MMBR.65.4.570-594.2001
doi: 10.1128/MMBR.65.4.570-594.2001
pubmed: 11729264
pmcid: 99041
Fung HYJ, Chook YM (2014) Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 27:52–61
doi: 10.1016/j.semcancer.2014.03.002
Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289
doi: 10.1146/annurev-cellbio-101512-122326
Zurzolo C (2021) Tunneling nanotubes: reshaping connectivity. Curr Opin Cell Biol 71:139–147
doi: 10.1016/j.ceb.2021.03.003
Lo Cicero A, Stahl PD, Raposo G (2015) Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 35:69–77
doi: 10.1016/j.ceb.2015.04.013
Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383
doi: 10.1083/jcb.201211138
Latifkar A, Hur YH, Sanchez JC et al (2019) New insights into extracellular vesicle biogenesis and function. J Cell Sci 132:jcs222406
doi: 10.1242/jcs.222406
Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208
doi: 10.1007/s00018-017-2595-9
Pettinato G, Manivel JC, Ravetto C et al (1992) Papillary cystic tumor of the pancreas: a clinicopathologic study of 20 cases with cytologic, immunohistochemical, ultrastructural, and flow cytometric observations, and a review of the literature. Am J Clin Pathol 98:478–488. https://doi.org/10.1093/ajcp/98.5.478
doi: 10.1093/ajcp/98.5.478
pubmed: 1283055
Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902
doi: 10.1146/annurev-biochem-013118-111902
pubmed: 31220978
Meldolesi J (2018) Exosomes and ectosomes in intercellular communication. Curr Biol 28:R435–R444
doi: 10.1016/j.cub.2018.01.059
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980. https://doi.org/10.1038/ncomms3980
doi: 10.1038/ncomms3980
pubmed: 24356509
Tourrière H, Chebli K, Zekri L et al (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160:823–831. https://doi.org/10.1083/jcb.200212128
doi: 10.1083/jcb.200212128
pubmed: 12642610
pmcid: 2173781
Sexton RE, Mpilla G, Kim S et al (2019) Ras and exosome signaling. Semin Cancer Biol 54:131–137
doi: 10.1016/j.semcancer.2019.02.004
Shurtleff MJ, Temoche-Diaz MM, Karfilis KV et al (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife 5:e19276. https://doi.org/10.7554/eLife.19276
doi: 10.7554/eLife.19276
pubmed: 27559612
pmcid: 5047747
Simons M, Raposo G (2009) Exosomes - vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581. https://doi.org/10.1016/j.ceb.2009.03.007
doi: 10.1016/j.ceb.2009.03.007
pubmed: 19442504
Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: Extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920
doi: 10.1016/j.jprot.2010.06.006
Khuperkar D, Helen M, Magre I, Joseph J (2015) Inter-cellular transport of Ran GTPase. PLoS ONE 10:e0125506. https://doi.org/10.1371/journal.pone.0125506
doi: 10.1371/journal.pone.0125506
pubmed: 25894517
pmcid: 4403925
Duijvesz D, Burnum-Johnson KE, Gritsenko MA et al (2013) Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLoS ONE 8:e82589. https://doi.org/10.1371/journal.pone.0082589
doi: 10.1371/journal.pone.0082589
pubmed: 24391718
pmcid: 3876995
Kaur S, Saldana AC, Elkahloun AG et al (2021) CD47 interactions with exportin-1 limit the targeting of m7G-modified RNAs to extracellular vesicles. J Cell Commun Signal. https://doi.org/10.1007/s12079-021-00646-y
doi: 10.1007/s12079-021-00646-y
pubmed: 34841476
pmcid: 7904989
Choi DS, Lee JM, Gun WP et al (2007) Proteomic analysis of microvesicles derived from human colorectal cancer cells. J Proteome Res 6:4646–4655. https://doi.org/10.1021/pr070192y
doi: 10.1021/pr070192y
pubmed: 17956143
Guescini M, Guidolin D, Vallorani L et al (2010) C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res 316:1977–1984. https://doi.org/10.1016/j.yexcr.2010.04.006
doi: 10.1016/j.yexcr.2010.04.006
pubmed: 20399774
Koppen T, Weckmann A, Müller S et al (2011) Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics 11:4397–4410. https://doi.org/10.1002/pmic.201000774
doi: 10.1002/pmic.201000774
pubmed: 21901833
Mears R, Craven RA, Hanrahan S et al (2004) Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4:4019–4031. https://doi.org/10.1002/pmic.200400876
doi: 10.1002/pmic.200400876
pubmed: 15478216
Miguet L, Pacaud K, Felden C et al (2006) Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization. Proteomics 6:153–171. https://doi.org/10.1002/pmic.200500133
doi: 10.1002/pmic.200500133
pubmed: 16342139
Kugeratski FG, Hodge K, Lilla S et al (2021) Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat Cell Biol 23:631–641. https://doi.org/10.1038/s41556-021-00693-y
doi: 10.1038/s41556-021-00693-y
pubmed: 34108659
pmcid: 9290189
Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 30:Chapter 3:Unit 3.22. https://doi.org/10.1002/0471143030.cb0322s30
Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17
doi: 10.1038/s41556-018-0250-9
Pluchino S, Smith JA (2019) Explicating exosomes: reclassifying the rising stars of intercellular communication. Cell 177:225–227
doi: 10.1016/j.cell.2019.03.020
Jeppesen DK, Fenix AM, Franklin JL et al (2019) Reassessment of exosome composition. Cell 177:428-445.e18. https://doi.org/10.1016/j.cell.2019.02.029
doi: 10.1016/j.cell.2019.02.029
pubmed: 30951670
pmcid: 6664447
Beltraminelli T, Perez CR, De Palma M (2021) Disentangling the complexity of tumor-derived extracellular vesicles. Cell Rep 35
Rajagopalan V, Canals D, Luberto C et al (2015) Critical determinants of mitochondria-associated neutral sphingomyelinase (MA-nSMase) for mitochondrial localization. Biochim Biophys Acta Gen Subj 1850:628–639. https://doi.org/10.1016/j.bbagen.2014.11.019
doi: 10.1016/j.bbagen.2014.11.019
Wang G, Jin S, Huang W et al (2021) LPS-induced macrophage HMGB1-loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome. Cell Death Discov 7:1–11. https://doi.org/10.1038/s41420-021-00729-0
doi: 10.1038/s41420-021-00729-0
Wang Y, Zhao M, Liu S et al (2020) Macrophage-derived extracellular vesicles: diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis 11:1–18
doi: 10.1038/s41419-019-2182-0
McDonald MK, Tian Y, Qureshi RA et al (2014) Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155:1527–1539. https://doi.org/10.1016/j.pain.2014.04.029
doi: 10.1016/j.pain.2014.04.029
pubmed: 24792623
pmcid: 4106699
Bischoff FR, Klebe C, Kretschmer J et al (1994) RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci U S A 91:2587–2591. https://doi.org/10.1073/pnas.91.7.2587
doi: 10.1073/pnas.91.7.2587
pubmed: 8146159
pmcid: 43414
Klebe C, Bischoff FR, Ponstingl H, Wittinghofer A (1995) Interaction of the nuclear GTP-binding protein ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34:639–647. https://doi.org/10.1021/bi00002a031
doi: 10.1021/bi00002a031
pubmed: 7819259
Ghosh S, Bose M, Ray A, Bhattacharyya SN (2015) Polysome arrest restricts miRNA turnover by preventing exosomal export of miRNA in growth-retarded mammalian cells. Mol Biol Cell 26:1072–1083. https://doi.org/10.1091/mbc.E14-11-1521
doi: 10.1091/mbc.E14-11-1521
pubmed: 25609084
pmcid: 4357507
Monecke T, Dickmanns A, Ficner R (2014) Allosteric control of the exportin CRM1 unraveled by crystal structure analysis. FEBS J 281:4179–4194
doi: 10.1111/febs.12842
Monecke T, Haselbach D, Voß B et al (2013) Structural basis for cooperativity of CRM1 export complex formation. Proc Natl Acad Sci USA 110:960–965. https://doi.org/10.1073/pnas.1215214110
doi: 10.1073/pnas.1215214110
pubmed: 23277578
Englmeier L, Fornerod M, Bischoff FR et al (2001) RanBP3 influences interactions between CRM1 and its nuclear protein export substrates. EMBO Rep 2:926–932. https://doi.org/10.1093/embo-reports/kve200
doi: 10.1093/embo-reports/kve200
pubmed: 11571268
pmcid: 1084078
Nemergut ME, Lindsay ME, Brownawell AM, Macara IG (2002) Ran-binding protein 3 links Crm1 to the Ran guanine nucleotide exchange factor. J Biol Chem 277:17385–17388. https://doi.org/10.1074/jbc.C100620200
doi: 10.1074/jbc.C100620200
pubmed: 11932251
Petosa C, Schoehn G, Askjaer P et al (2004) Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell 16:761–775. https://doi.org/10.1016/j.molcel.2004.11.018
doi: 10.1016/j.molcel.2004.11.018
pubmed: 15574331
Brown VM, Krynetski EY, Krynetskaia NF et al (2004) A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J Biol Chem 279:5984–5992. https://doi.org/10.1074/jbc.M307071200
doi: 10.1074/jbc.M307071200
pubmed: 14617633
Colombo M, Moita C, Van Niel G et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565. https://doi.org/10.1242/jcs.128868
doi: 10.1242/jcs.128868
pubmed: 24105262
Boudhraa Z, Carmona E, Provencher D, Mes-Masson AM (2020) Ran GTPase: a key player in tumor progression and metastasis. Front Cell Dev Biol 8:345. https://doi.org/10.3389/fcell.2020.00345
doi: 10.3389/fcell.2020.00345
pubmed: 32528950
pmcid: 7264121
Kim HJ, Taylor JP (2017) Lost in transportation: nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases. Neuron 96:285–297
doi: 10.1016/j.neuron.2017.07.029
Hachiya N, Sochocka M, Brzecka A et al (2021) Nuclear envelope and nuclear pore complexes in neurodegenerative diseases—new perspectives for therapeutic interventions. Mol Neurobiol 58:983–995
doi: 10.1007/s12035-020-02168-x
Mortimore GE, Pösö AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 7:539–564
doi: 10.1146/annurev.nu.07.070187.002543
Bitetto G, Di Fonzo A (2020) Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 9:1–16
doi: 10.1186/s40035-020-00205-2
Becker A, Thakur BK, Weiss JM et al (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–848
doi: 10.1016/j.ccell.2016.10.009
Thompson AG, Gray E, Heman-Ackah SM et al (2016) Extracellular vesicles in neurodegenerative disease-pathogenesis to biomarkers. Nat Rev Neurol 12:346–357
doi: 10.1038/nrneurol.2016.68
Conlan RS, Pisano S, Oliveira MI et al (2017) Exosomes as reconfigurable therapeutic systems. Trends Mol Med 23:636–650. https://doi.org/10.1016/j.molmed.2017.05.003
doi: 10.1016/j.molmed.2017.05.003
pubmed: 28648185
pmcid: 5657340
Candelario KM, Steindler DA (2014) The role of extracellular vesicles in the progression of neurodegenerative disease and cancer. Trends Mol Med 20:368–374
doi: 10.1016/j.molmed.2014.04.003
Sabri N, Roth P, Xylourgidis N et al (2007) Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport. J Cell Biol 178:557–565. https://doi.org/10.1083/jcb.200612135
doi: 10.1083/jcb.200612135
pubmed: 17682050
pmcid: 2064463
Barrès V, Ouellet V, Lafontaine J et al (2010) An essential role for Ran GTPase in epithelial ovarian cancer cell survival. Mol Cancer 9:272. https://doi.org/10.1186/1476-4598-9-272
doi: 10.1186/1476-4598-9-272
pubmed: 20942967
pmcid: 2964620
Kurisetty VV, Johnston PG, Johnston N et al (2008) RAN GTPase is an effector of the invasive/metastatic phenotype induced by osteopontin. Oncogene 27:7139–7149. https://doi.org/10.1038/onc.2008.325
doi: 10.1038/onc.2008.325
pubmed: 18794800
Matchett KB, McFarlane S, Hamilton SE et al (2014) Ran GTPase in nuclear envelope formation and cancer metastasis. Adv Exp Med Biol 773:323–351. https://doi.org/10.1007/978-1-4899-8032-8_15
doi: 10.1007/978-1-4899-8032-8_15
pubmed: 24563355
Rensen WM, Mangiacasale R, Ciciarello M, Lavia P (2008) The GTPase Ran: regulation of cell life and potential roles in cell transformation. Front Biosci 13:4097–4121. https://doi.org/10.2741/2996
doi: 10.2741/2996
pubmed: 18508502
Çağatay T, Chook YM (2018) Karyopherins in cancer. Curr Opin Cell Biol 52:30–42
doi: 10.1016/j.ceb.2018.01.006
Dakir E-H, Pickard A, Srivastava K et al (2018) The anti-psychotic drug pimozide is a novel chemotherapeutic for breast cancer. Oncotarget 9:34889–34910. https://doi.org/10.18632/oncotarget.26175
doi: 10.18632/oncotarget.26175
pmcid: 6201850
Haggag YA, Matchett KB, Falconer RA et al (2019) Novel ran-RCC1 inhibitory peptide-loaded nanoparticles have anti-cancer efficacy in vitro and in vivo. Cancers (Basel) 11:222. https://doi.org/10.3390/cancers11020222
doi: 10.3390/cancers11020222
Azmi AS, Uddin MH, Mohammad RM (2021) The nuclear export protein XPO1—from biology to targeted therapy. Nat Rev Clin Oncol 18:152–169. https://doi.org/10.1038/s41571-020-00442-4
doi: 10.1038/s41571-020-00442-4
pubmed: 33173198
Azizian NG, Azizian NG, Li Y, Li Y (2020) XPO1-dependent nuclear export as a target for cancer therapy. J Hematol Oncol 13:61. https://doi.org/10.1186/s13045-020-00903-4
doi: 10.1186/s13045-020-00903-4
pubmed: 32487143
pmcid: 7268335
Sahoo MR, Gaikwad S, Khuperkar D et al (2017) Nup358 binds to AGO proteins through its SUMO -interacting motifs and promotes the association of target mRNA with miRISC. EMBO Rep 18:241–263. https://doi.org/10.15252/embr.201642386
doi: 10.15252/embr.201642386
pubmed: 28039207
Bellare JR, Davis HT, Scriven LE, Talmon Y (1988) Controlled environment vitrification system: an improved sample preparation technique. J Electron Microsc Tech 10:87–111. https://doi.org/10.1002/jemt.1060100111
doi: 10.1002/jemt.1060100111
pubmed: 3193246
Murawala P, Tripathi MM, Vyas P et al (2009) Nup358 interacts with APC and plays a role in cell polarization. J Cell Sci 122:3113–3122. https://doi.org/10.1242/jcs.037523
doi: 10.1242/jcs.037523
pubmed: 19654215