RanGTPase links nucleo-cytoplasmic transport to the recruitment of cargoes into small extracellular vesicles.

Exosome Exportin1/CRM1 Intercellular communication Nuclear export signal RanGTPase Small extracellular vesicles

Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
02 Jul 2022
Historique:
received: 12 04 2022
accepted: 13 06 2022
revised: 09 06 2022
entrez: 2 7 2022
pubmed: 3 7 2022
medline: 7 7 2022
Statut: epublish

Résumé

Small extracellular vesicle (sEV)-mediated intercellular communication regulates multiple aspects of growth and development in multicellular organisms. However, the mechanism underlying cargo recruitment into sEVs is currently unclear. We show that the key nucleo-cytoplasmic transport (NCT) protein-RanGTPase, in its GTP-bound form (RanGTP), is enriched in sEVs secreted by mammalian cells. This recruitment of RanGTP into sEVs depends on the export receptor CRM1 (also called XPO1). The recruitment of GAPDH, a candidate cargo protein, into sEVs is regulated by the RanGTP-CRM1axis in a nuclear export signal (NES)-dependent manner. Perturbation of NCT through overexpression or depletion of nuclear transport components affected the recruitment of Ran, CRM1 and GAPDH into sEVs. Our studies, thus, suggest a link between NCT, particularly the Ran-CRM1 axis, and recruitment of NES-containing cargoes into the sEVs. Collectively, these findings implicate RanGTPase as a link between NCT and sEV mediated intercellular communication.

Identifiants

pubmed: 35779171
doi: 10.1007/s00018-022-04422-y
pii: 10.1007/s00018-022-04422-y
doi:

Substances chimiques

Nuclear Export Signals 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

392

Subventions

Organisme : Department of Biotechnology, Ministry of Science and Technology, India
ID : BT/PR32331/BRB/10/1774/2019

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208
doi: 10.1152/physrev.2001.81.1.153
Joseph J (2006) Ran at glance. J Cell Sci 119:3481–3484. https://doi.org/10.1242/jcs.03071
doi: 10.1242/jcs.03071 pubmed: 16931595
Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594. https://doi.org/10.1128/MMBR.65.4.570-594.2001
doi: 10.1128/MMBR.65.4.570-594.2001 pubmed: 11729264 pmcid: 99041
Fung HYJ, Chook YM (2014) Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 27:52–61
doi: 10.1016/j.semcancer.2014.03.002
Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289
doi: 10.1146/annurev-cellbio-101512-122326
Zurzolo C (2021) Tunneling nanotubes: reshaping connectivity. Curr Opin Cell Biol 71:139–147
doi: 10.1016/j.ceb.2021.03.003
Lo Cicero A, Stahl PD, Raposo G (2015) Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 35:69–77
doi: 10.1016/j.ceb.2015.04.013
Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383
doi: 10.1083/jcb.201211138
Latifkar A, Hur YH, Sanchez JC et al (2019) New insights into extracellular vesicle biogenesis and function. J Cell Sci 132:jcs222406
doi: 10.1242/jcs.222406
Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208
doi: 10.1007/s00018-017-2595-9
Pettinato G, Manivel JC, Ravetto C et al (1992) Papillary cystic tumor of the pancreas: a clinicopathologic study of 20 cases with cytologic, immunohistochemical, ultrastructural, and flow cytometric observations, and a review of the literature. Am J Clin Pathol 98:478–488. https://doi.org/10.1093/ajcp/98.5.478
doi: 10.1093/ajcp/98.5.478 pubmed: 1283055
Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902
doi: 10.1146/annurev-biochem-013118-111902 pubmed: 31220978
Meldolesi J (2018) Exosomes and ectosomes in intercellular communication. Curr Biol 28:R435–R444
doi: 10.1016/j.cub.2018.01.059
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980. https://doi.org/10.1038/ncomms3980
doi: 10.1038/ncomms3980 pubmed: 24356509
Tourrière H, Chebli K, Zekri L et al (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160:823–831. https://doi.org/10.1083/jcb.200212128
doi: 10.1083/jcb.200212128 pubmed: 12642610 pmcid: 2173781
Sexton RE, Mpilla G, Kim S et al (2019) Ras and exosome signaling. Semin Cancer Biol 54:131–137
doi: 10.1016/j.semcancer.2019.02.004
Shurtleff MJ, Temoche-Diaz MM, Karfilis KV et al (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife 5:e19276. https://doi.org/10.7554/eLife.19276
doi: 10.7554/eLife.19276 pubmed: 27559612 pmcid: 5047747
Simons M, Raposo G (2009) Exosomes - vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581. https://doi.org/10.1016/j.ceb.2009.03.007
doi: 10.1016/j.ceb.2009.03.007 pubmed: 19442504
Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: Extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920
doi: 10.1016/j.jprot.2010.06.006
Khuperkar D, Helen M, Magre I, Joseph J (2015) Inter-cellular transport of Ran GTPase. PLoS ONE 10:e0125506. https://doi.org/10.1371/journal.pone.0125506
doi: 10.1371/journal.pone.0125506 pubmed: 25894517 pmcid: 4403925
Duijvesz D, Burnum-Johnson KE, Gritsenko MA et al (2013) Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLoS ONE 8:e82589. https://doi.org/10.1371/journal.pone.0082589
doi: 10.1371/journal.pone.0082589 pubmed: 24391718 pmcid: 3876995
Kaur S, Saldana AC, Elkahloun AG et al (2021) CD47 interactions with exportin-1 limit the targeting of m7G-modified RNAs to extracellular vesicles. J Cell Commun Signal. https://doi.org/10.1007/s12079-021-00646-y
doi: 10.1007/s12079-021-00646-y pubmed: 34841476 pmcid: 7904989
Choi DS, Lee JM, Gun WP et al (2007) Proteomic analysis of microvesicles derived from human colorectal cancer cells. J Proteome Res 6:4646–4655. https://doi.org/10.1021/pr070192y
doi: 10.1021/pr070192y pubmed: 17956143
Guescini M, Guidolin D, Vallorani L et al (2010) C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res 316:1977–1984. https://doi.org/10.1016/j.yexcr.2010.04.006
doi: 10.1016/j.yexcr.2010.04.006 pubmed: 20399774
Koppen T, Weckmann A, Müller S et al (2011) Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics 11:4397–4410. https://doi.org/10.1002/pmic.201000774
doi: 10.1002/pmic.201000774 pubmed: 21901833
Mears R, Craven RA, Hanrahan S et al (2004) Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4:4019–4031. https://doi.org/10.1002/pmic.200400876
doi: 10.1002/pmic.200400876 pubmed: 15478216
Miguet L, Pacaud K, Felden C et al (2006) Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization. Proteomics 6:153–171. https://doi.org/10.1002/pmic.200500133
doi: 10.1002/pmic.200500133 pubmed: 16342139
Kugeratski FG, Hodge K, Lilla S et al (2021) Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat Cell Biol 23:631–641. https://doi.org/10.1038/s41556-021-00693-y
doi: 10.1038/s41556-021-00693-y pubmed: 34108659 pmcid: 9290189
Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 30:Chapter 3:Unit 3.22. https://doi.org/10.1002/0471143030.cb0322s30
Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17
doi: 10.1038/s41556-018-0250-9
Pluchino S, Smith JA (2019) Explicating exosomes: reclassifying the rising stars of intercellular communication. Cell 177:225–227
doi: 10.1016/j.cell.2019.03.020
Jeppesen DK, Fenix AM, Franklin JL et al (2019) Reassessment of exosome composition. Cell 177:428-445.e18. https://doi.org/10.1016/j.cell.2019.02.029
doi: 10.1016/j.cell.2019.02.029 pubmed: 30951670 pmcid: 6664447
Beltraminelli T, Perez CR, De Palma M (2021) Disentangling the complexity of tumor-derived extracellular vesicles. Cell Rep 35
Rajagopalan V, Canals D, Luberto C et al (2015) Critical determinants of mitochondria-associated neutral sphingomyelinase (MA-nSMase) for mitochondrial localization. Biochim Biophys Acta Gen Subj 1850:628–639. https://doi.org/10.1016/j.bbagen.2014.11.019
doi: 10.1016/j.bbagen.2014.11.019
Wang G, Jin S, Huang W et al (2021) LPS-induced macrophage HMGB1-loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome. Cell Death Discov 7:1–11. https://doi.org/10.1038/s41420-021-00729-0
doi: 10.1038/s41420-021-00729-0
Wang Y, Zhao M, Liu S et al (2020) Macrophage-derived extracellular vesicles: diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis 11:1–18
doi: 10.1038/s41419-019-2182-0
McDonald MK, Tian Y, Qureshi RA et al (2014) Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155:1527–1539. https://doi.org/10.1016/j.pain.2014.04.029
doi: 10.1016/j.pain.2014.04.029 pubmed: 24792623 pmcid: 4106699
Bischoff FR, Klebe C, Kretschmer J et al (1994) RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci U S A 91:2587–2591. https://doi.org/10.1073/pnas.91.7.2587
doi: 10.1073/pnas.91.7.2587 pubmed: 8146159 pmcid: 43414
Klebe C, Bischoff FR, Ponstingl H, Wittinghofer A (1995) Interaction of the nuclear GTP-binding protein ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34:639–647. https://doi.org/10.1021/bi00002a031
doi: 10.1021/bi00002a031 pubmed: 7819259
Ghosh S, Bose M, Ray A, Bhattacharyya SN (2015) Polysome arrest restricts miRNA turnover by preventing exosomal export of miRNA in growth-retarded mammalian cells. Mol Biol Cell 26:1072–1083. https://doi.org/10.1091/mbc.E14-11-1521
doi: 10.1091/mbc.E14-11-1521 pubmed: 25609084 pmcid: 4357507
Monecke T, Dickmanns A, Ficner R (2014) Allosteric control of the exportin CRM1 unraveled by crystal structure analysis. FEBS J 281:4179–4194
doi: 10.1111/febs.12842
Monecke T, Haselbach D, Voß B et al (2013) Structural basis for cooperativity of CRM1 export complex formation. Proc Natl Acad Sci USA 110:960–965. https://doi.org/10.1073/pnas.1215214110
doi: 10.1073/pnas.1215214110 pubmed: 23277578
Englmeier L, Fornerod M, Bischoff FR et al (2001) RanBP3 influences interactions between CRM1 and its nuclear protein export substrates. EMBO Rep 2:926–932. https://doi.org/10.1093/embo-reports/kve200
doi: 10.1093/embo-reports/kve200 pubmed: 11571268 pmcid: 1084078
Nemergut ME, Lindsay ME, Brownawell AM, Macara IG (2002) Ran-binding protein 3 links Crm1 to the Ran guanine nucleotide exchange factor. J Biol Chem 277:17385–17388. https://doi.org/10.1074/jbc.C100620200
doi: 10.1074/jbc.C100620200 pubmed: 11932251
Petosa C, Schoehn G, Askjaer P et al (2004) Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell 16:761–775. https://doi.org/10.1016/j.molcel.2004.11.018
doi: 10.1016/j.molcel.2004.11.018 pubmed: 15574331
Brown VM, Krynetski EY, Krynetskaia NF et al (2004) A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J Biol Chem 279:5984–5992. https://doi.org/10.1074/jbc.M307071200
doi: 10.1074/jbc.M307071200 pubmed: 14617633
Colombo M, Moita C, Van Niel G et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565. https://doi.org/10.1242/jcs.128868
doi: 10.1242/jcs.128868 pubmed: 24105262
Boudhraa Z, Carmona E, Provencher D, Mes-Masson AM (2020) Ran GTPase: a key player in tumor progression and metastasis. Front Cell Dev Biol 8:345. https://doi.org/10.3389/fcell.2020.00345
doi: 10.3389/fcell.2020.00345 pubmed: 32528950 pmcid: 7264121
Kim HJ, Taylor JP (2017) Lost in transportation: nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases. Neuron 96:285–297
doi: 10.1016/j.neuron.2017.07.029
Hachiya N, Sochocka M, Brzecka A et al (2021) Nuclear envelope and nuclear pore complexes in neurodegenerative diseases—new perspectives for therapeutic interventions. Mol Neurobiol 58:983–995
doi: 10.1007/s12035-020-02168-x
Mortimore GE, Pösö AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 7:539–564
doi: 10.1146/annurev.nu.07.070187.002543
Bitetto G, Di Fonzo A (2020) Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 9:1–16
doi: 10.1186/s40035-020-00205-2
Becker A, Thakur BK, Weiss JM et al (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–848
doi: 10.1016/j.ccell.2016.10.009
Thompson AG, Gray E, Heman-Ackah SM et al (2016) Extracellular vesicles in neurodegenerative disease-pathogenesis to biomarkers. Nat Rev Neurol 12:346–357
doi: 10.1038/nrneurol.2016.68
Conlan RS, Pisano S, Oliveira MI et al (2017) Exosomes as reconfigurable therapeutic systems. Trends Mol Med 23:636–650. https://doi.org/10.1016/j.molmed.2017.05.003
doi: 10.1016/j.molmed.2017.05.003 pubmed: 28648185 pmcid: 5657340
Candelario KM, Steindler DA (2014) The role of extracellular vesicles in the progression of neurodegenerative disease and cancer. Trends Mol Med 20:368–374
doi: 10.1016/j.molmed.2014.04.003
Sabri N, Roth P, Xylourgidis N et al (2007) Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport. J Cell Biol 178:557–565. https://doi.org/10.1083/jcb.200612135
doi: 10.1083/jcb.200612135 pubmed: 17682050 pmcid: 2064463
Barrès V, Ouellet V, Lafontaine J et al (2010) An essential role for Ran GTPase in epithelial ovarian cancer cell survival. Mol Cancer 9:272. https://doi.org/10.1186/1476-4598-9-272
doi: 10.1186/1476-4598-9-272 pubmed: 20942967 pmcid: 2964620
Kurisetty VV, Johnston PG, Johnston N et al (2008) RAN GTPase is an effector of the invasive/metastatic phenotype induced by osteopontin. Oncogene 27:7139–7149. https://doi.org/10.1038/onc.2008.325
doi: 10.1038/onc.2008.325 pubmed: 18794800
Matchett KB, McFarlane S, Hamilton SE et al (2014) Ran GTPase in nuclear envelope formation and cancer metastasis. Adv Exp Med Biol 773:323–351. https://doi.org/10.1007/978-1-4899-8032-8_15
doi: 10.1007/978-1-4899-8032-8_15 pubmed: 24563355
Rensen WM, Mangiacasale R, Ciciarello M, Lavia P (2008) The GTPase Ran: regulation of cell life and potential roles in cell transformation. Front Biosci 13:4097–4121. https://doi.org/10.2741/2996
doi: 10.2741/2996 pubmed: 18508502
Çağatay T, Chook YM (2018) Karyopherins in cancer. Curr Opin Cell Biol 52:30–42
doi: 10.1016/j.ceb.2018.01.006
Dakir E-H, Pickard A, Srivastava K et al (2018) The anti-psychotic drug pimozide is a novel chemotherapeutic for breast cancer. Oncotarget 9:34889–34910. https://doi.org/10.18632/oncotarget.26175
doi: 10.18632/oncotarget.26175 pmcid: 6201850
Haggag YA, Matchett KB, Falconer RA et al (2019) Novel ran-RCC1 inhibitory peptide-loaded nanoparticles have anti-cancer efficacy in vitro and in vivo. Cancers (Basel) 11:222. https://doi.org/10.3390/cancers11020222
doi: 10.3390/cancers11020222
Azmi AS, Uddin MH, Mohammad RM (2021) The nuclear export protein XPO1—from biology to targeted therapy. Nat Rev Clin Oncol 18:152–169. https://doi.org/10.1038/s41571-020-00442-4
doi: 10.1038/s41571-020-00442-4 pubmed: 33173198
Azizian NG, Azizian NG, Li Y, Li Y (2020) XPO1-dependent nuclear export as a target for cancer therapy. J Hematol Oncol 13:61. https://doi.org/10.1186/s13045-020-00903-4
doi: 10.1186/s13045-020-00903-4 pubmed: 32487143 pmcid: 7268335
Sahoo MR, Gaikwad S, Khuperkar D et al (2017) Nup358 binds to AGO proteins through its SUMO -interacting motifs and promotes the association of target mRNA with miRISC. EMBO Rep 18:241–263. https://doi.org/10.15252/embr.201642386
doi: 10.15252/embr.201642386 pubmed: 28039207
Bellare JR, Davis HT, Scriven LE, Talmon Y (1988) Controlled environment vitrification system: an improved sample preparation technique. J Electron Microsc Tech 10:87–111. https://doi.org/10.1002/jemt.1060100111
doi: 10.1002/jemt.1060100111 pubmed: 3193246
Murawala P, Tripathi MM, Vyas P et al (2009) Nup358 interacts with APC and plays a role in cell polarization. J Cell Sci 122:3113–3122. https://doi.org/10.1242/jcs.037523
doi: 10.1242/jcs.037523 pubmed: 19654215

Auteurs

Sakalya Chavan (S)

National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India.

Deepak Khuperkar (D)

National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India.
UK Dementia Research Institute at King's College London, London and University of Cambridge, Cambridge, UK.

Akshay Lonare (A)

National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India.

Swagatika Panigrahi (S)

National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India.

Jayesh Bellare (J)

Department of Chemical Engineering and Wadhwani Research Centre for Bioengineering, IIT Bombay, Mumbai, 400079, India.

Srikanth Rapole (S)

National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India.

Vasudevan Seshadri (V)

National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India.

Jomon Joseph (J)

National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune, 411007, India. josephj@nccs.res.in.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH