Oxidized dextran crosslinked polysaccharide/protein/polydopamine composite cryogels with multiple hemostatic efficacies for noncompressible hemorrhage and wound healing.

Biocompatible crosslinker Noncompressible hemorrhage Polydopamine Shape-memory hemostatic cryogel Wound healing

Journal

International journal of biological macromolecules
ISSN: 1879-0003
Titre abrégé: Int J Biol Macromol
Pays: Netherlands
ID NLM: 7909578

Informations de publication

Date de publication:
31 Aug 2022
Historique:
received: 31 03 2022
revised: 30 05 2022
accepted: 18 06 2022
pubmed: 3 7 2022
medline: 4 8 2022
entrez: 2 7 2022
Statut: ppublish

Résumé

Noncompressible hemorrhage caused by gunshots and sharp objects leads to higher trauma mortality, and cryogels have great potential in controlling noncompressible hemorrhage applications owing to their shape-memory properties. However, the use of non-toxic crosslinkers to prepare cryogels for noncompressible hemorrhage remains a challenge. In this study, a series of cryogels were prepared using oxidized dextran (ODex) as a biocompatible crosslinker, combined with the good hemostatic properties of chitosan (CS) and human-like collagen (HLC), and polydopamine nanoparticles (PDA-NPs) were also introduced to strengthen the shape recovery speed of the cryogels and further enhance their hemostatic performance. The CS/HLC/ODex/PDA-NPs (CHOP) cryogels presented a highly interconnected macroporous structure, powerful water/blood absorption capacity, robust mechanical performance, and rapid water/blood-triggered shape recovery. In vitro coagulation and coagulation mechanism tests showed that CHOP exhibited strong procoagulant ability, high adhesion to blood cells and fibrinogen, and the capacity to activate platelets and intrinsic pathways. In vivo hemostatic tests indicated that CHOP could effectively shorten the bleeding time and reduce the bleeding volume of liver incision bleeding and liver noncompressible hemorrhage. Meanwhile, CHOP exhibited good biocompatibility and biodegradability, and could promote wound healing. These results suggest that CHOP cryogels will be a promising hemostatic dressing.

Identifiants

pubmed: 35779652
pii: S0141-8130(22)01344-7
doi: 10.1016/j.ijbiomac.2022.06.130
pii:
doi:

Substances chimiques

Cryogels 0
Dextrans 0
Hemostatics 0
Indoles 0
Polymers 0
polydopamine 0
Water 059QF0KO0R
Collagen 9007-34-5
Chitosan 9012-76-4

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

675-690

Informations de copyright

Copyright © 2022 Elsevier B.V. All rights reserved.

Auteurs

Chenhui Ma (C)

Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.

Jing Zhao (J)

Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.

Chenhui Zhu (C)

Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.

Min Jiang (M)

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.

Pei Ma (P)

Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China. Electronic address: mapei@nwu.edu.cn.

Yu Mi (Y)

Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China. Electronic address: mi_yu@nwu.edu.cn.

Daidi Fan (D)

Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China. Electronic address: fandaidi@nwu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH