GBP3 promotes glioblastoma resistance to temozolomide by enhancing DNA damage repair.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
07 2022
Historique:
received: 19 11 2021
accepted: 21 06 2022
revised: 15 06 2022
pubmed: 3 7 2022
medline: 3 8 2022
entrez: 2 7 2022
Statut: ppublish

Résumé

Glioblastoma is the most common malignant brain cancer with dismal survival and prognosis. Temozolomide (TMZ) is a first-line chemotherapeutic agent for glioblastoma, but the emergence of drug resistance limits its anti-tumor activity. We previously discovered that the interferon inducible guanylate binding protein 3 (GBP3) is highly elevated and promotes tumorigenicity of glioblastoma. Here, we show that TMZ treatment significantly upregulates the expression of GBP3 and stimulator of interferon genes (STING), both of which increase TMZ-induced DNA damage repair and reduce cell apoptosis of glioblastoma cells. Mechanistically, relying on its N-terminal GTPase domain, GBP3 physically interacts with STING to stabilize STING protein levels, which in turn induces expression of p62 (Sequestosome 1), nuclear factor erythroid 2 like 2 (NFE2L2, NRF2), and O6-methlyguanine-DNA-methyltransferase (MGMT), leading to the resistance to TMZ treatment. Reducing GBP3 levels by RNA interference in glioblastoma cells markedly increases the sensitivity to TMZ treatment in vitro and in murine glioblastoma models. Clinically, GBP3 expression is high and positively correlated with STING, NRF2, p62, and MGMT expression in human glioblastoma tumors, and is associated with poor outcomes. These findings provide novel insight into TMZ resistance and suggest that GBP3 may represent a novel potential target for the treatment of glioblastoma.

Identifiants

pubmed: 35780181
doi: 10.1038/s41388-022-02397-5
pii: 10.1038/s41388-022-02397-5
doi:

Substances chimiques

Antineoplastic Agents, Alkylating 0
GBP3 protein, human 0
Gbp3 protein, mouse 0
NF-E2-Related Factor 2 0
Interferons 9008-11-1
DNA Modification Methylases EC 2.1.1.-
GTP-Binding Proteins EC 3.6.1.-
DNA Repair Enzymes EC 6.5.1.-
Temozolomide YF1K15M17Y

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3876-3885

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.
pubmed: 27157931 doi: 10.1007/s00401-016-1545-1
Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, et al. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharm Ther. 2018;184:13–41.
doi: 10.1016/j.pharmthera.2017.10.017
Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol. 2019;21:v1–v100.
pubmed: 31675094 pmcid: 6823730 doi: 10.1093/neuonc/noz150
Kitange GJ, Carlson BL, Schroeder MA, Grogan PT, Lamont JD, Decker PA, et al. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol. 2009;11:281–91.
pubmed: 18952979 pmcid: 2718972 doi: 10.1215/15228517-2008-090
Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med. 2018;215:1287–99.
pubmed: 29622565 pmcid: 5940270 doi: 10.1084/jem.20180139
Reisländer T, Groelly FJ, Tarsounas M. DNA damage and cancer immunotherapy: a STING in the tale. Mol Cell. 2020;80:21–8.
pubmed: 32810436 doi: 10.1016/j.molcel.2020.07.026
Cheng Z, Dai T, He X, Zhang Z, Xie F, Wang S, et al. The interactions between cGAS-STING pathway and pathogens. Signal Transduct Target Ther. 2020;5:91.
pubmed: 32532954 pmcid: 7293265 doi: 10.1038/s41392-020-0198-7
Vashi N, Bakhoum SF. The evolution of STING signaling and its involvement in cancer. Trends Biochem Sci. 2021;46:446–60.
pubmed: 33461879 pmcid: 8122033 doi: 10.1016/j.tibs.2020.12.010
Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, et al. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer. 2020;19:133.
pubmed: 32854711 pmcid: 7450153 doi: 10.1186/s12943-020-01250-1
de la Vega MR, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell. 2018;34:21–43.
pmcid: 6039250 doi: 10.1016/j.ccell.2018.03.022
Pilla-Moffett D, Barber MF, Taylor GA, Coers J. Interferon-inducible GTPases in host resistance, inflammation and disease. J Mol Biol. 2016;428:3495–513.
pubmed: 27181197 pmcid: 5010443 doi: 10.1016/j.jmb.2016.04.032
Xu H, Sun L, Zheng Y, Yu S, Ou-Yang J, Han H, et al. GBP3 promotes glioma cell proliferation via SQSTM1/p62-ERK1/2 axis. Biochem Biophys Res Commun. 2018;495:446–53.
pubmed: 29128363 doi: 10.1016/j.bbrc.2017.11.050
Liu J, Gao L, Zhan N, Xu P, Yang J, Yuan F, et al. Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma. J Exp Clin Cancer Res. 2020;39:137.
pubmed: 32677981 pmcid: 7364815 doi: 10.1186/s13046-020-01641-8
Storozynsky Q, Hitt MM. The impact of radiation-induced DNA damage on cGAS-STING-mediated immune responses to cancer. Int J Mol Sci. 2020;21:8877.
pmcid: 7700321 doi: 10.3390/ijms21228877
Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL, et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol Cell. 2018;71:745–60.e5.
pubmed: 30193098 pmcid: 6127031 doi: 10.1016/j.molcel.2018.07.034
Nordmann A, Wixler L, Boergeling Y, Wixler V, Ludwig S. A new splice variant of the human guanylate-binding protein 3 mediates anti-influenza activity through inhibition of viral transcription and replication. FASEB J. 2012;26:1290–300.
pubmed: 22106366 doi: 10.1096/fj.11-189886
Ma L, Liu J, Zhang X, Qi J, Yu W, Gu Y. p38 MAPK-dependent Nrf2 induction enhances the resistance of glioma cells against TMZ. Med Oncol. 2015;32:69.
pubmed: 25691294 doi: 10.1007/s12032-015-0517-y
Rocha CR, Kajitani GS, Quinet A, Fortunato RS, Menck CF. NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells. Oncotarget. 2016;7:48081–92.
pubmed: 27344172 pmcid: 5217002 doi: 10.18632/oncotarget.10129
Liu Y, Kern JT, Walker JR, Johnson JA, Schultz PG, Luesch H. A genomic screen for activators of the antioxidant response element. Proc Natl Acad Sci USA. 2007;104:5205–10.
pubmed: 17360324 pmcid: 1829287 doi: 10.1073/pnas.0700898104
Moscat J, Karin M, Diaz-Meco MT. p62 in cancer: signaling adaptor beyond autophagy. Cell. 2016;167:606–9.
pubmed: 27768885 pmcid: 5114003 doi: 10.1016/j.cell.2016.09.030
Pölönen P, Jawahar Deen A, Leinonen HM, Jyrkkänen HK, Kuosmanen S, Mononen M, et al. Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene. 2019;38:7473–90.
pubmed: 31444413 doi: 10.1038/s41388-019-0956-6
Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, et al. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 2016;11:3214–25.
pubmed: 27552339 pmcid: 5367156 doi: 10.1021/acschembio.6b00651
Tretina K, Park ES, Maminska A, MacMicking JD. Interferon-induced guanylate-binding proteins: guardians of host defense in health and disease. J Exp Med. 2019;216:482–500.
pubmed: 30755454 pmcid: 6400534 doi: 10.1084/jem.20182031
Cheng L, Gou L, Wei T, Zhang J. GBP1 promotes erlotinib resistance via PGK1‑activated EMT signaling in non‑small cell lung cancer. Int J Oncol. 2020;57:858–70.
pubmed: 32582960 doi: 10.3892/ijo.2020.5086
Zhao J, Li X, Liu L, Cao J, Goscinski MA, Fan H, et al. Oncogenic role of guanylate binding protein 1 in human prostate cancer. Front Oncol. 2019;9:1494.
pubmed: 31998647 doi: 10.3389/fonc.2019.01494
Guimarães DP, Oliveira IM, de Moraes E, Paiva GR, Souza DM, Barnas C, et al. Interferon-inducible guanylate binding protein (GBP)-2: a novel p53-regulated tumor marker in esophageal squamous cell carcinomas. Int J Cancer. 2009;124:272–9.
pubmed: 19003964 doi: 10.1002/ijc.23944
Quintero M, Adamoski D, Reis LMD, Ascenção CFR, Oliveira KRS, Gonçalves KA, et al. Guanylate-binding protein-1 is a potential new therapeutic target for triple-negative breast cancer. BMC Cancer. 2017;17:727.
pubmed: 29115931 pmcid: 5688804 doi: 10.1186/s12885-017-3726-2
Li M, Mukasa A, Inda MM, Zhang J, Chin L, Cavenee W, et al. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma. J Exp Med. 2011;208:2657–73.
pubmed: 22162832 pmcid: 3244036 doi: 10.1084/jem.20111102
Yu S, Yu X, Sun L, Zheng Y, Chen L, Xu H, et al. GBP2 enhances glioblastoma invasion through Stat3/fibronectin pathway. Oncogene. 2020;39:5042–55.
pubmed: 32518375 doi: 10.1038/s41388-020-1348-7
Duan Z, Foster R, Brakora KA, Yusuf RZ, Seiden MV. GBP1 overexpression is associated with a paclitaxel resistance phenotype. Cancer Chemother Pharm. 2006;57:25–33.
doi: 10.1007/s00280-005-0026-3
Fukumoto M, Amanuma T, Kuwahara Y, Shimura T, Suzuki M, Mori S, et al. Guanine nucleotide-binding protein 1 is one of the key molecules contributing to cancer cell radioresistance. Cancer Sci. 2014;105:1351–9.
pubmed: 25098609 pmcid: 4462352 doi: 10.1111/cas.12489
Godoy P, Cadenas C, Hellwig B, Marchan R, Stewart J, Reif R, et al. Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response. Breast Cancer. 2014;21:491–9.
pubmed: 23001506 doi: 10.1007/s12282-012-0404-8
Wang J, Min H, Hu B, Xue X, Liu Y. Guanylate-binding protein-2 inhibits colorectal cancer cell growth and increases the sensitivity to paclitaxel of paclitaxel-resistant colorectal cancer cells by interfering Wnt signaling. J Cell Biochem. 2020;121:1250–9.
pubmed: 31489998 doi: 10.1002/jcb.29358
Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Disco. 2020;10:26–39.
doi: 10.1158/2159-8290.CD-19-0761
Xia T, Konno H, Ahn J, Barber GN. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 2016;14:282–97.
pubmed: 26748708 doi: 10.1016/j.celrep.2015.12.029
Prabakaran T, Bodda C, Krapp C, Zhang BC, Christensen MH, Sun C, et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. Embo J.2018;37:e97858.
pubmed: 29496741 pmcid: 5897779 doi: 10.15252/embj.201797858
Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, et al. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ. 2019;26:2300–13.
pubmed: 30778200 pmcid: 6889501 doi: 10.1038/s41418-019-0303-z
Wu J, Zhang L, Li H, Wu S, Liu Z. Nrf2 induced cisplatin resistance in ovarian cancer by promoting CD99 expression. Biochem Biophys Res Commun. 2019;518:698–705.
pubmed: 31472965 doi: 10.1016/j.bbrc.2019.08.113
Ryoo IG, Choi BH, Ku SK, Kwak MK. High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance. Redox Biol. 2018;17:246–58.
pubmed: 29729523 pmcid: 6006726 doi: 10.1016/j.redox.2018.04.015
Deng D, Luo K, Liu H, Nie X, Xue L, Wang R, et al. p62 acts as an oncogene and is targeted by miR-124-3p in glioma. Cancer Cell Int. 2019;19:280
pubmed: 31708690 pmcid: 6836386 doi: 10.1186/s12935-019-1004-x
Cong ZX, Wang HD, Zhou Y, Wang JW, Pan H, Zhang DD, et al. Temozolomide and irradiation combined treatment-induced Nrf2 activation increases chemoradiation sensitivity in human glioblastoma cells. J Neurooncol. 2014;116:41–8.
pubmed: 24078215 doi: 10.1007/s11060-013-1260-x
Paranjpe A, Bailey NI, Konduri S, Bobustuc GC, Ali-Osman F, Yusuf MA, et al. New insights into estrogenic regulation of O(6)-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: co-degradation of ER-α and MGMT proteins by fulvestrant or O(6)-benzylguanine indicates fresh avenues for therapy. J Biomed Res. 2016;30:393–410.
pubmed: 27845303 pmcid: 5044712
Yu X, Jin J, Zheng Y, Zhu H, Xu H, Ma J, et al. GBP5 drives malignancy of glioblastoma via the Src/ERK1/2/MMP3 pathway. Cell Death Dis. 2021;12:203.
pubmed: 33608513 pmcid: 7896088 doi: 10.1038/s41419-021-03492-3
Li M, Xiao A, Floyd D, Olmez I, Lee J, Godlewski J, et al. CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget. 2017;8:55319–31.
pubmed: 28903422 pmcid: 5589661 doi: 10.18632/oncotarget.19429

Auteurs

Hui Xu (H)

Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China.
Jiangsu Key Laboratory of Neuropsychiatric Disease, Institute of Neuroscience, Soochow University, Suzhou, 215004, Jiangsu, China.

Jing Jin (J)

Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China.

Ying Chen (Y)

Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China.

Guoqing Wu (G)

Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China.

Hua Zhu (H)

Department of Pediatrics, The First Hospital of China Medical University, Shenyang, 110122, Liaoning, China.

Qing Wang (Q)

Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China.

Ji Wang (J)

Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China.

Shenggang Li (S)

Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China.

Florina-Nicoleta Grigore (FN)

Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA.

Jun Ma (J)

Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA.

Clark C Chen (CC)

Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA.

Qing Lan (Q)

Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, Jiangsu, China. szlq006@163.com.
Jiangsu Key Laboratory of Neuropsychiatric Disease, Institute of Neuroscience, Soochow University, Suzhou, 215004, Jiangsu, China. szlq006@163.com.

Ming Li (M)

Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA. m2li@umn.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH