Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance.
alpha amplitude
individual alpha frequency (IAF)
rhythmic TMS
subjective awareness
visual perception
Journal
Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481
Informations de publication
Date de publication:
2022
2022
Historique:
received:
28
02
2022
accepted:
01
06
2022
entrez:
5
7
2022
pubmed:
6
7
2022
medline:
6
7
2022
Statut:
epublish
Résumé
Alpha-band oscillatory activity over occipito-parietal areas is involved in shaping perceptual and cognitive processes, with a growing body of electroencephalographic (EEG) evidence indicating that pre-stimulus alpha-band amplitude relates to the subjective perceptual experience, but not to objective measures of visual task performance (discrimination accuracy). The primary aim of the present transcranial magnetic stimulation (TMS) study was to investigate whether causality can be established for this relationship, using rhythmic (alpha-band) TMS entrainment protocols. It was anticipated that pre-stimulus 10 Hz-TMS would induce changes in subjective awareness ratings but not accuracy, in the visual hemifield contralateral to TMS. To test this, we administered 10 Hz-TMS over the right intraparietal sulcus prior to visual stimulus presentation in 17 participants, while measuring their objective performance and subjective awareness in a visual discrimination task. Arrhythmic and 10 Hz sham-TMS served as control conditions (within-participant design). Resting EEG was used to record individual alpha frequency (IAF). A study conducted in parallel to ours with a similar design but reported after we completed data collection informed further, secondary analyses for a causal relationship between pre-stimulus alpha-frequency and discrimination accuracy. This was explored through a regression analysis between rhythmic-TMS alpha-pace relative to IAF and performance measures. Our results revealed that contrary to our primary expectation, pre-stimulus 10 Hz-TMS did not affect subjective measures of performance, nor accuracy, relative to control-TMS. This null result is in accord with a recent finding showing that for influencing subjective measures of performance, alpha-TMS needs to be applied post-stimulus. In addition, our secondary analysis showed that IAF was positively correlated with task accuracy across participants, and that 10 Hz-TMS effects on accuracy-but not awareness ratings-depended on IAF: The slower (or faster) the IAF, relative to the fixed 10 Hz TMS frequency, the stronger the TMS-induced performance improvement (or worsening), indicating that 10 Hz-TMS produced a gain (or a loss) in individual performance, directly depending on TMS-pace relative to IAF. In support of recent reports, this is evidence for alpha-frequency playing a causal role in perceptual sensitivity likely through regulating the speed of sensory sampling.
Identifiants
pubmed: 35784849
doi: 10.3389/fnins.2022.886342
pmc: PMC9247279
doi:
Types de publication
Journal Article
Langues
eng
Pagination
886342Informations de copyright
Copyright © 2022 Coldea, Veniero, Morand, Trajkovic, Romei, Harvey and Thut.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer CT declared a past collaboration with one of the authors, GT to the handling editor.
Références
eNeuro. 2018 Jun 14;5(3):
pubmed: 29911179
Trends Cogn Sci. 2016 Oct;20(10):723-735
pubmed: 27567317
Curr Biol. 2009 Nov 17;19(21):1846-52
pubmed: 19913428
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8382-8390
pubmed: 32238562
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1346-1351
pubmed: 29358390
Front Psychol. 2021 Mar 22;12:643677
pubmed: 33828509
Trends Cogn Sci. 2020 Aug;24(8):639-653
pubmed: 32513573
J Cogn Neurosci. 2020 Jan;32(1):1-11
pubmed: 31479346
Brain Res. 2020 May 1;1734:146744
pubmed: 32114057
J Neurosci. 2017 Jan 25;37(4):807-819
pubmed: 28123017
Conscious Cogn. 2022 Jul;102:103337
pubmed: 35525224
Neuroimage. 2010 May 15;51(1):365-72
pubmed: 20156573
Neuron. 2017 Apr 5;94(1):193-206.e5
pubmed: 28343866
Neuroimage. 2016 Feb 1;126:120-30
pubmed: 26584867
Curr Biol. 2022 Mar 14;32(5):988-998.e6
pubmed: 35090592
Neuroimage. 2011 Jan 1;54(1):234-43
pubmed: 20682353
J Neurosci. 2013 Mar 13;33(11):5000-5
pubmed: 23486970
Psychophysiology. 2022 Aug;59(8):e14041
pubmed: 35274314
Front Psychol. 2013 Jan 10;3:606
pubmed: 23335907
J Neurosci. 2013 Feb 13;33(7):3212-20
pubmed: 23407974
Brain Topogr. 2015 Jan;28(1):127-34
pubmed: 24687327
Psychol Rev. 2017 Jan;124(1):91-114
pubmed: 28004960
J Neurosci. 2021 Nov 17;41(46):9581-9592
pubmed: 34593605
Neuropsychologia. 2017 Feb;96:9-18
pubmed: 28041948
Psychophysiology. 2018 Jul;55(7):e13064
pubmed: 29357113
Elife. 2019 Feb 06;8:
pubmed: 30724733
Multisens Res. 2017 Jan 1;30(6):565-578
pubmed: 31287091
Elife. 2015 Dec 19;4:
pubmed: 26687008
Clin Neurophysiol. 2009 Dec;120(12):2008-2039
pubmed: 19833552
Neuropsychologia. 2021 Aug 20;159:107919
pubmed: 34153304
Eur J Neurosci. 2022 Jun;55(11-12):3125-3140
pubmed: 33655566
Psychophysiology. 2016 Aug;53(8):1154-64
pubmed: 27144476
Curr Biol. 2015 Nov 16;25(22):2985-90
pubmed: 26526370
Trends Cogn Sci. 2003 May;7(5):207-213
pubmed: 12757822
Neuroimage. 2014 May 15;92:46-55
pubmed: 24508648
Int J Psychophysiol. 2019 Jan;135:106-112
pubmed: 30528832
Curr Biol. 2017 Aug 7;27(15):2344-2351.e4
pubmed: 28756954
Sci Rep. 2018 Aug 7;8(1):11810
pubmed: 30087359
Curr Biol. 2015 Jan 19;25(2):231-235
pubmed: 25544613
Eur J Neurosci. 2019 Jan;49(1):94-105
pubmed: 30375069
J Neurosci. 2014 Jul 2;34(27):8988-98
pubmed: 24990919
J Neurosci. 2015 Oct 28;35(43):14435-47
pubmed: 26511236
Conscious Cogn. 2017 Sep;54:47-55
pubmed: 28222937
Curr Biol. 2011 Feb 22;21(4):334-7
pubmed: 21315592
Eur J Neurosci. 2012 Mar;35(6):968-74
pubmed: 22394014
Front Neurosci. 2020 Oct 15;14:580712
pubmed: 33177983
eNeuro. 2017 Dec 12;4(6):
pubmed: 29255794
Eur J Neurosci. 2022 Jun;55(11-12):3010-3024
pubmed: 34643973
Neuroscience. 2017 Sep 30;360:146-154
pubmed: 28739525
Front Psychol. 2020 Jul 31;11:1765
pubmed: 32849045
Conscious Cogn. 2012 Mar;21(1):422-30
pubmed: 22071269
Front Hum Neurosci. 2016 Jan 06;9:695
pubmed: 26779005
Sci Rep. 2019 Oct 10;9(1):14510
pubmed: 31601822
J Neurosci. 2010 Jun 23;30(25):8692-7
pubmed: 20573914
Neural Plast. 2015;2015:717312
pubmed: 25759762
Curr Biol. 2011 Jul 26;21(14):1176-85
pubmed: 21723129
PLoS One. 2021 Sep 10;16(9):e0256987
pubmed: 34506528
J Neurosci. 2019 Jul 17;39(29):5711-5718
pubmed: 31109964