An outlook on potential protein targets of COVID-19 as a druggable site.
COVID-19
SARS-COV-2
Spike protein
Therapeutic drugs
Vaccines
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
09
03
2022
accepted:
17
06
2022
pubmed:
6
7
2022
medline:
2
11
2022
entrez:
5
7
2022
Statut:
ppublish
Résumé
SARS-CoV-2 which causes COVID-19 disease has started a pandemic episode all over the world infecting millions of people and has created medical and economic crisis. From December 2019, cases originated from Wuhan city and started spreading at an alarming rate and has claimed millions of lives till now. Scientific studies suggested that this virus showed genomic similarity of about 90% with SARS-CoV and is found to be more contagious as compared to SARS-CoV and MERS-CoV. Since the pandemic, virus has undergone constant mutation and few strains have raised public concern like Delta and Omicron variants of SARS-CoV-2. This review focuses on the structural features of SARS-CoV-2 proteins and host proteins as well as their mechanism of action. We have also elucidated the repurposed drugs that have shown potency to inhibit these protein targets in combating COVID-19. Moreover, the article discusses the vaccines approved so far and those under clinical trials for their efficacy against COVID-19. Using cryo-electron microscopy or X-ray diffraction, hundreds of crystallographic data of SARS-CoV-2 proteins have been published including structural and non-structural proteins. These proteins have a significant role at different aspects in the viral machinery and presented themselves as potential target for drug designing and therapeutic interventions. Also, there are few host cell proteins which helps in SARS-CoV-2 entry and proteolytic cleavage required for viral infection.
Sections du résumé
BACKGROUND
BACKGROUND
SARS-CoV-2 which causes COVID-19 disease has started a pandemic episode all over the world infecting millions of people and has created medical and economic crisis. From December 2019, cases originated from Wuhan city and started spreading at an alarming rate and has claimed millions of lives till now. Scientific studies suggested that this virus showed genomic similarity of about 90% with SARS-CoV and is found to be more contagious as compared to SARS-CoV and MERS-CoV. Since the pandemic, virus has undergone constant mutation and few strains have raised public concern like Delta and Omicron variants of SARS-CoV-2.
OBJECTIVE
OBJECTIVE
This review focuses on the structural features of SARS-CoV-2 proteins and host proteins as well as their mechanism of action. We have also elucidated the repurposed drugs that have shown potency to inhibit these protein targets in combating COVID-19. Moreover, the article discusses the vaccines approved so far and those under clinical trials for their efficacy against COVID-19.
CONCLUSION
CONCLUSIONS
Using cryo-electron microscopy or X-ray diffraction, hundreds of crystallographic data of SARS-CoV-2 proteins have been published including structural and non-structural proteins. These proteins have a significant role at different aspects in the viral machinery and presented themselves as potential target for drug designing and therapeutic interventions. Also, there are few host cell proteins which helps in SARS-CoV-2 entry and proteolytic cleavage required for viral infection.
Identifiants
pubmed: 35790657
doi: 10.1007/s11033-022-07724-3
pii: 10.1007/s11033-022-07724-3
pmc: PMC9256362
doi:
Substances chimiques
Antiviral Agents
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
10729-10748Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Lu H, Stratton CW, Tang YW (2020) Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol 92(4):401–402
pubmed: 31950516
pmcid: 7166628
doi: 10.1002/jmv.25678
Sohrabi C, Alsafi Z, O’Neill N et al (2020) World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg 76:71–76
pubmed: 32112977
pmcid: 7105032
doi: 10.1016/j.ijsu.2020.02.034
Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17(3):181–192
pubmed: 30531947
doi: 10.1038/s41579-018-0118-9
Lai CC, Shih TP, Ko WC et al (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 55(3):105924
pubmed: 32081636
pmcid: 7127800
doi: 10.1016/j.ijantimicag.2020.105924
Singhal T (2020) A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 87:281–286
pubmed: 32166607
pmcid: 7090728
doi: 10.1007/s12098-020-03263-6
Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
pubmed: 31986264
pmcid: 7159299
doi: 10.1016/S0140-6736(20)30183-5
Yu WB, Tang GD, Zhang L et al (2020) Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zool Res 41(3):247–257
pubmed: 32351056
pmcid: 7231477
doi: 10.24272/j.issn.2095-8137.2020.022
Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273
pubmed: 32015507
pmcid: 7095418
doi: 10.1038/s41586-020-2012-7
Lam TTY, Jia N, Zhang YW et al (2020) Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583:282–285
pubmed: 32218527
doi: 10.1038/s41586-020-2169-0
Li H, Liu SM, Yu XH et al (2020) Coronavirus disease 2019 (COVID-19): current status and future perspective. Int J Antimicrob Agents 55(5):105951
pubmed: 32234466
pmcid: 7139247
doi: 10.1016/j.ijantimicag.2020.105951
Shereen MA, Khan S, Kazmi A et al (2020) COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 24:91–98
pubmed: 32257431
pmcid: 7113610
doi: 10.1016/j.jare.2020.03.005
Chan JFW, Kok KH, Zhu Z et al (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9(1):221–236
pubmed: 31987001
pmcid: 7067204
doi: 10.1080/22221751.2020.1719902
Harapan H, Itoh N, Yufika A et al (2020) Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health 13(5):667–673
pubmed: 32340833
pmcid: 7142680
doi: 10.1016/j.jiph.2020.03.019
Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574
pubmed: 32007145
pmcid: 7159086
doi: 10.1016/S0140-6736(20)30251-8
Yuan Y, Cao D, Zhang Y et al (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8(1):1–9
doi: 10.1038/ncomms15092
Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92(4):418–423
pubmed: 31967327
pmcid: 7167049
doi: 10.1002/jmv.25681
Frame B, Hemmings AD (2020) Coronavirus at the end of the world: Antarctica matters. Soc Sci Hum Open 2(1):100054
Zhang L, Jackson CB, Mou H et al (2020) The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv
Planas D, Bruel T, Grzelak L et al (2021) Sensitivity of infectious SARS-CoV-2 B. 1.1. 7 and B. 1.351 variants to neutralizing antibodies. Nat Med 27(5):917–924
pubmed: 33772244
doi: 10.1038/s41591-021-01318-5
Collier DA, De Marco A, Ferreira IA et al (2021) Sensitivity of SARS-CoV-2 B. 1.1. 7 to mRNA vaccine-elicited antibodies. Nature 593(7857):136–141
pubmed: 33706364
doi: 10.1038/s41586-021-03412-7
Kirby T (2021) New variant of SARS-CoV-2 in UK causes surge of COVID-19. Lancet Respir Med 9(2):e20-21
pubmed: 33417829
pmcid: 7784534
doi: 10.1016/S2213-2600(21)00005-9
da Silva JC, Felix VB, Leão SABF et al (2021) New Brazilian variant of the SARS-CoV-2 (P1) of COVID-19 in Alagoas state. Braz J Infect Dis 25(3):101588
pubmed: 34102147
pmcid: 8133383
doi: 10.1016/j.bjid.2021.101588
Kirola L (2021) Genetic emergence of B. 1.617. 2 in COVID-19. New Microbes New Infect 43:100929
pubmed: 34336227
pmcid: 8302888
doi: 10.1016/j.nmni.2021.100929
Liu L, Iketani S, Guo Y et al (2022) Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602:676–681
pubmed: 35016198
doi: 10.1038/s41586-021-04388-0
Worldometers.info. COVID-19 CORONAVIRUS PANDEMIC. 2021. worldometers.info/coronavirus/
Belouzard S, Millet JK, Licitra BN et al (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6):1011–1033
pubmed: 22816037
pmcid: 3397359
doi: 10.3390/v4061011
Hulswit RJG, De Haan CAM, Bosch BJ (2016) Coronavirus spike protein and tropism changes. Adv Virus Res 96:29–57
pubmed: 27712627
pmcid: 7112277
doi: 10.1016/bs.aivir.2016.08.004
Walls AC, Xiong X, Park YJ et al (2019) Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176(5):1026–1039
pubmed: 30712865
pmcid: 6751136
doi: 10.1016/j.cell.2018.12.028
Walls AC, Park YJ, Tortorici MA et al (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281–292
pubmed: 32155444
pmcid: 7102599
doi: 10.1016/j.cell.2020.02.058
Wong MC, Cregeen SJJ, Ajami NJ et al (2020) Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. BioRxiv
Wan Y, Shang J, Graham R et al (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 94(7):e00127-e220
pubmed: 31996437
pmcid: 7081895
doi: 10.1128/JVI.00127-20
Othman H, Bouslama Z, Brandenburg JT et al (2020) Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem Biophys Res Commun 527(3):702–708
pubmed: 32410735
pmcid: 7221370
doi: 10.1016/j.bbrc.2020.05.028
Kuba K, Imai Y, Ohto-Nakanishi T et al (2010) Trilogy of ACE2: a peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther 128(1):119–128
pubmed: 20599443
pmcid: 7112678
doi: 10.1016/j.pharmthera.2010.06.003
Imai Y, Kuba K, Ohto-Nakanishi T et al (2010) Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J 74(3):405–410
pubmed: 20134095
doi: 10.1253/circj.CJ-10-0045
Coutard B, Valle C, de Lamballerie X et al (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir Res 176:104742
pubmed: 32057769
doi: 10.1016/j.antiviral.2020.104742
Zhang T, Wu Q, Zhang Z (2020) Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 30(7):1346–1351
pubmed: 32197085
pmcid: 7156161
doi: 10.1016/j.cub.2020.03.022
Xu X, Chen P, Wang J et al (2020) Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63(3):457–460
pubmed: 32009228
pmcid: 7089049
doi: 10.1007/s11427-020-1637-5
Wrapp D, Wang N, Corbett KS et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263
pubmed: 32075877
pmcid: 7164637
doi: 10.1126/science.abb2507
Wang Q, Qiu Y, Li J et al (2020) A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility. Virol Sin 35(3):337–339
pubmed: 32198713
pmcid: 7091172
doi: 10.1007/s12250-020-00212-7
Lu G, Wang Q, Gao GF (2015) Bat-to-human: spike features determining ‘host jump’of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol 23(8):468–478
pubmed: 26206723
pmcid: 7125587
doi: 10.1016/j.tim.2015.06.003
Jaimes JA, André NM, Chappie JS et al (2020) Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically-sensitive activation loop. J Mol Biol 432(10):3309–3325
pubmed: 32320687
pmcid: 7166309
doi: 10.1016/j.jmb.2020.04.009
Diao B, Wang C, Tan Y et al (2020) Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 11:827
pubmed: 32425950
pmcid: 7205903
doi: 10.3389/fimmu.2020.00827
Gurung AB, Ali MA, Lee J et al (2020) Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sci 255:117831
pubmed: 32450166
pmcid: 7243810
doi: 10.1016/j.lfs.2020.117831
Bacha U, Barrila J, Velazquez-Campoy A et al (2004) Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry 43(17):4906–4912
pubmed: 15109248
doi: 10.1021/bi0361766
Ul-Qamar MT, Alqahtani SM, Alamri MA et al (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 10(4):313-319
Gao X, Qin B, Chen P et al (2021) Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm Sin B 11(1):237–245
pubmed: 32895623
doi: 10.1016/j.apsb.2020.08.014
Fu Z, Huang B, Tang J et al (2021) The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat Commun 12(1):1–12
doi: 10.1038/s41467-020-20718-8
Garg S, Roy A (2020) In silico analysis of selected alkaloids against main protease (Mpro) of SARS-CoV-2. Chem Biol Interact 332:109309
pubmed: 33181114
pmcid: 7649659
doi: 10.1016/j.cbi.2020.109309
Hillen HS, Kokic G, Farnung L et al (2020) Structure of replicating SARS-CoV-2 polymerase. Nature 584(7819):154–156
pubmed: 32438371
doi: 10.1038/s41586-020-2368-8
Shang B, Wang XY, Yuan JW et al (2005) Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus. Biochem Biophys Res Commun 336(1):110–117
pubmed: 16112641
pmcid: 7092910
doi: 10.1016/j.bbrc.2005.08.032
Hurst KR, Koetzner CA, Masters PS (2009) Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol 83(14):7221–7234
pubmed: 19420077
pmcid: 2704785
doi: 10.1128/JVI.00440-09
Saikatendu KS, Joseph JS, Subramanian V et al (2007) Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol 81(8):3913–3921
pubmed: 17229691
pmcid: 1866093
doi: 10.1128/JVI.02236-06
He R, Dobie F, Ballantine M et al (2004) Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 316(2):476–483
pubmed: 15020242
pmcid: 7111152
doi: 10.1016/j.bbrc.2004.02.074
Zeng W, Liu G, Ma H et al (2020) Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun 527(3):618–623
pubmed: 32416961
pmcid: 7190499
doi: 10.1016/j.bbrc.2020.04.136
Ahmed SF, Quadeer AA, McKay MR (2020) Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12(3):254
pmcid: 7150947
doi: 10.3390/v12030254
Guo L, Ren L, Yang S et al (2020) Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis 71(15):778–785
pubmed: 32198501
doi: 10.1093/cid/ciaa310
Bianchi M, Benvenuto D, Giovanetti M et al (2020) Sars-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? Biomed Res Int 2020:1–6
doi: 10.1155/2020/4389089
Thomas S (2020) The structure of the membrane protein of sars-cov-2 resembles the sugar transporter semiSWEET. Pathog Immun 5(1):342–363
pubmed: 33154981
pmcid: 7608487
doi: 10.20411/pai.v5i1.377
Duart G, García-Murria MJ, Grau B et al (2020) SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biol 10(9):200209
pubmed: 32898469
pmcid: 7536074
doi: 10.1098/rsob.200209
Millet JK, Whittaker GR (2015) Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res 202:120–134
pubmed: 25445340
doi: 10.1016/j.virusres.2014.11.021
Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78(4):779–784
pubmed: 32362314
pmcid: 7194065
doi: 10.1016/j.molcel.2020.04.022
Vankadari N (2020) Structural interactions between pandemic SARS-CoV-2 spike glycoprotein and human Furin protease. BioRxiv
Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280
pubmed: 32142651
pmcid: 7102627
doi: 10.1016/j.cell.2020.02.052
Bestle D, Heindl MR, Limburg H et al (2020) TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 3(9):e202000786
pubmed: 32703818
pmcid: 7383062
doi: 10.26508/lsa.202000786
Yamada S, Fukushi S, Kinoshita H et al (2021) Assessment of SARS-CoV-2 infectivity of upper respiratory specimens from COVID-19 patients by virus isolation using VeroE6/TMPRSS2 cells. BMJ Open Respir Res 8(1):e000830
pubmed: 33627333
doi: 10.1136/bmjresp-2020-000830
Bittmann S, Luchter E, Moschüring-Alieva E et al (2020) 19: Camostat and the role of serine protease entry inhibitor TMPRSS2. J Regen Biol Med 2(2):1–2
Habtemariam S, Nabavi SF, Ghavami S et al (2020) Possible use of the mucolytic drug, bromhexine hydrochloride, as a prophylactic agent against SARS-CoV-2 infection based on its action on the transmembrane serine protease 2. Pharmacol Res 157:104853
pubmed: 32360584
pmcid: 7192109
doi: 10.1016/j.phrs.2020.104853
Zhao MM, Yang WL, Yang FY et al (2021) Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther 6(1):1–12
doi: 10.1038/s41392-021-00558-8
Zhang J, Ma X, Yu F et al (2020) Teicoplanin potently blocks the cell entry of 2019-nCoV. BioRxiv
Ou X, Liu Y, Lei X et al (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1):1–12
doi: 10.1038/s41467-020-15562-9
Kumar D, Chauhan G, Kalra S et al (2020) A perspective on potential target proteins of COVID-19: comparison with SARS-CoV for designing new small molecules. Bioorg Chem 104:104326
pubmed: 33142431
pmcid: 7524440
doi: 10.1016/j.bioorg.2020.104326
Holshue ML, DeBolt C, Lindquist S et al (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med 382:929–936
pubmed: 32004427
pmcid: 7092802
doi: 10.1056/NEJMoa2001191
Yao X, Ye F, Zhang M et al (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 71(15):732–739
pubmed: 32150618
doi: 10.1093/cid/ciaa237
Grein J, Ohmagari N, Shin D et al (2020) Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 382(24):2327–2336
pubmed: 32275812
doi: 10.1056/NEJMoa2007016
Terali K, Baddal B, Gülcan HO (2020) Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: insights from a molecular mechanics-assisted structure-based virtual screening experiment. J Mol Graph Model 100:107697
pubmed: 32739642
pmcid: 7377801
doi: 10.1016/j.jmgm.2020.107697
Bhati S (2020) Structure-based drug designing of naphthalene based SARS-CoV PLpro inhibitors for the treatment of COVID-19. Heliyon 6(11):e05558
pubmed: 33251371
pmcid: 7679114
doi: 10.1016/j.heliyon.2020.e05558
Beigel JH, Nam HH, Adams PL et al (2019) Advances in respiratory virus therapeutics–A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res 167:45–67
pubmed: 30974127
pmcid: 7132446
doi: 10.1016/j.antiviral.2019.04.006
Chen L, Xiong J, Bao L et al (2020) Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 20(4):398–400
pubmed: 32113510
pmcid: 7128218
doi: 10.1016/S1473-3099(20)30141-9
Shen C, Wang Z, Zhao F et al (2020) Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 323(16):1582–1589
pubmed: 32219428
pmcid: 7101507
doi: 10.1001/jama.2020.4783
Derebail VK, Falk RJ (2020) ANCA-associated vasculitis: refining therapy with plasma exchange and glucocorticoids. N Engl J Med 382(7):671–673
pubmed: 32053306
doi: 10.1056/NEJMe1917490
Hammer Q, Rückert T, Romagnani C (2018) Natural killer cell specificity for viral infections. Nat Immunol 19(8):800–808
pubmed: 30026479
doi: 10.1038/s41590-018-0163-6
Ortiz LA, DuTreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci 104(26):11002–11007
pubmed: 17569781
pmcid: 1891813
doi: 10.1073/pnas.0704421104
Gupta N, Su X, Popov B et al (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179(3):1855–1863
pubmed: 17641052
doi: 10.4049/jimmunol.179.3.1855
Matthay MA, Goolaerts A, Howard JP et al (2010) Mesenchymal stem cells for acute lung injury: preclinical evidence. Crit Care Med 38(10 Suppl):S569–S573
pubmed: 21164399
pmcid: 3580946
doi: 10.1097/CCM.0b013e3181f1ff1d
Kumamoto M, Nishiwaki T, Matsuo N et al (2009) Minimally cultured bone marrow mesenchymal stem cells ameliorate fibrotic lung injury. Eur Respir J 34(3):740–748
pubmed: 19324956
doi: 10.1183/09031936.00128508
El Agha E, Kramann R, Schneider RK et al (2017) Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21(2):166–177
pubmed: 28777943
doi: 10.1016/j.stem.2017.07.011
Yang ZY, Kong WP, Huang Y et al (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428(6982):561–564
pubmed: 15024391
pmcid: 7095382
doi: 10.1038/nature02463
Kaul D (2020) An overview of coronaviruses including the SARS-2 coronavirus–Molecular biology, epidemiology and clinical implications. Curr Med Res Pract 10(2):54–64
pubmed: 32363221
pmcid: 7194867
doi: 10.1016/j.cmrp.2020.04.001
Wang F, Kream RM, Stefano GB (2020) An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit: Int Med J Exp Clin Res 26:e924700–e924701
Le TT, Andreadakis Z, Kumar A et al (2020) The COVID-19 vaccine development landscape. Nat Rev Drug Discov 19(5):305–306
doi: 10.1038/d41573-020-00073-5
Arya R, Kumari S, Pandey B et al (2021) Structural insights into SARS-CoV-2 proteins. J Mol Biol 433(2):166725
pubmed: 33245961
doi: 10.1016/j.jmb.2020.11.024
Singh AK, Singh A, Singh R et al (2021) Molnupiravir in COVID-19: a systematic review of literature. Diabetes Metab Syndr 15(6):102329
pubmed: 34742052
pmcid: 8556684
doi: 10.1016/j.dsx.2021.102329
Fishbane S, Hirsch JS, Nair V (2022) Special considerations for paxlovid treatment among transplant recipients with SARS-CoV-2 infection. Am J Kidney Dis 79(4):480–482
pubmed: 35032591
pmcid: 8754454
doi: 10.1053/j.ajkd.2022.01.001
Meini S, Pagotto A, Longo B et al (2020) Role of Lopinavir/Ritonavir in the treatment of Covid-19: a review of current evidence, guideline recommendations, and perspectives. J Clin Med 9(7):2050
pmcid: 7408758
doi: 10.3390/jcm9072050
Lin C, Li Y, Zhang Y et al (2021) Ceftazidime is a potential drug to inhibit SARS-CoV-2 infection in vitro by blocking spike protein–ACE2 interaction. Signal Transduct Target Ther 6(1):1–4
O’Brien MP, Neto EF, Chen KC et al (2021) Casirivimab with imdevimab antibody cocktail for COVID-19 prevention: interim results. Top Antivir Med 29(1):33–34
Westendorf K, Žentelis S, Wang L et al (2022) LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep 39(7):110812
pubmed: 35568025
pmcid: 9035363
doi: 10.1016/j.celrep.2022.110812
Gottlieb RL, Nirula A, Chen P et al (2021) Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 325(7):632–644
pubmed: 33475701
pmcid: 7821080
doi: 10.1001/jama.2021.0202
Gupta A, Gonzalez-Rojas Y, Juarez E et al (2021) Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med 385(21):1941–1950
pubmed: 34706189
doi: 10.1056/NEJMoa2107934
Mode D, Stockholm LC AstraZeneca: Evusheld (formerly AZD7442) long-acting antibody combination authorised for emergency use in the US for pre-exposure prophylaxis (prevention) of COVID-19