An outlook on potential protein targets of COVID-19 as a druggable site.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Nov 2022
Historique:
received: 09 03 2022
accepted: 17 06 2022
pubmed: 6 7 2022
medline: 2 11 2022
entrez: 5 7 2022
Statut: ppublish

Résumé

SARS-CoV-2 which causes COVID-19 disease has started a pandemic episode all over the world infecting millions of people and has created medical and economic crisis. From December 2019, cases originated from Wuhan city and started spreading at an alarming rate and has claimed millions of lives till now. Scientific studies suggested that this virus showed genomic similarity of about 90% with SARS-CoV and is found to be more contagious as compared to SARS-CoV and MERS-CoV. Since the pandemic, virus has undergone constant mutation and few strains have raised public concern like Delta and Omicron variants of SARS-CoV-2. This review focuses on the structural features of SARS-CoV-2 proteins and host proteins as well as their mechanism of action. We have also elucidated the repurposed drugs that have shown potency to inhibit these protein targets in combating COVID-19. Moreover, the article discusses the vaccines approved so far and those under clinical trials for their efficacy against COVID-19. Using cryo-electron microscopy or X-ray diffraction, hundreds of crystallographic data of SARS-CoV-2 proteins have been published including structural and non-structural proteins. These proteins have a significant role at different aspects in the viral machinery and presented themselves as potential target for drug designing and therapeutic interventions. Also, there are few host cell proteins which helps in SARS-CoV-2 entry and proteolytic cleavage required for viral infection.

Sections du résumé

BACKGROUND BACKGROUND
SARS-CoV-2 which causes COVID-19 disease has started a pandemic episode all over the world infecting millions of people and has created medical and economic crisis. From December 2019, cases originated from Wuhan city and started spreading at an alarming rate and has claimed millions of lives till now. Scientific studies suggested that this virus showed genomic similarity of about 90% with SARS-CoV and is found to be more contagious as compared to SARS-CoV and MERS-CoV. Since the pandemic, virus has undergone constant mutation and few strains have raised public concern like Delta and Omicron variants of SARS-CoV-2.
OBJECTIVE OBJECTIVE
This review focuses on the structural features of SARS-CoV-2 proteins and host proteins as well as their mechanism of action. We have also elucidated the repurposed drugs that have shown potency to inhibit these protein targets in combating COVID-19. Moreover, the article discusses the vaccines approved so far and those under clinical trials for their efficacy against COVID-19.
CONCLUSION CONCLUSIONS
Using cryo-electron microscopy or X-ray diffraction, hundreds of crystallographic data of SARS-CoV-2 proteins have been published including structural and non-structural proteins. These proteins have a significant role at different aspects in the viral machinery and presented themselves as potential target for drug designing and therapeutic interventions. Also, there are few host cell proteins which helps in SARS-CoV-2 entry and proteolytic cleavage required for viral infection.

Identifiants

pubmed: 35790657
doi: 10.1007/s11033-022-07724-3
pii: 10.1007/s11033-022-07724-3
pmc: PMC9256362
doi:

Substances chimiques

Antiviral Agents 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

10729-10748

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Lu H, Stratton CW, Tang YW (2020) Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol 92(4):401–402
pubmed: 31950516 pmcid: 7166628 doi: 10.1002/jmv.25678
Sohrabi C, Alsafi Z, O’Neill N et al (2020) World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg 76:71–76
pubmed: 32112977 pmcid: 7105032 doi: 10.1016/j.ijsu.2020.02.034
Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17(3):181–192
pubmed: 30531947 doi: 10.1038/s41579-018-0118-9
Lai CC, Shih TP, Ko WC et al (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 55(3):105924
pubmed: 32081636 pmcid: 7127800 doi: 10.1016/j.ijantimicag.2020.105924
Singhal T (2020) A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 87:281–286
pubmed: 32166607 pmcid: 7090728 doi: 10.1007/s12098-020-03263-6
Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
pubmed: 31986264 pmcid: 7159299 doi: 10.1016/S0140-6736(20)30183-5
Yu WB, Tang GD, Zhang L et al (2020) Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zool Res 41(3):247–257
pubmed: 32351056 pmcid: 7231477 doi: 10.24272/j.issn.2095-8137.2020.022
Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273
pubmed: 32015507 pmcid: 7095418 doi: 10.1038/s41586-020-2012-7
Lam TTY, Jia N, Zhang YW et al (2020) Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583:282–285
pubmed: 32218527 doi: 10.1038/s41586-020-2169-0
Li H, Liu SM, Yu XH et al (2020) Coronavirus disease 2019 (COVID-19): current status and future perspective. Int J Antimicrob Agents 55(5):105951
pubmed: 32234466 pmcid: 7139247 doi: 10.1016/j.ijantimicag.2020.105951
Shereen MA, Khan S, Kazmi A et al (2020) COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 24:91–98
pubmed: 32257431 pmcid: 7113610 doi: 10.1016/j.jare.2020.03.005
Chan JFW, Kok KH, Zhu Z et al (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9(1):221–236
pubmed: 31987001 pmcid: 7067204 doi: 10.1080/22221751.2020.1719902
Harapan H, Itoh N, Yufika A et al (2020) Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health 13(5):667–673
pubmed: 32340833 pmcid: 7142680 doi: 10.1016/j.jiph.2020.03.019
Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574
pubmed: 32007145 pmcid: 7159086 doi: 10.1016/S0140-6736(20)30251-8
Yuan Y, Cao D, Zhang Y et al (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8(1):1–9
doi: 10.1038/ncomms15092
Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92(4):418–423
pubmed: 31967327 pmcid: 7167049 doi: 10.1002/jmv.25681
Frame B, Hemmings AD (2020) Coronavirus at the end of the world: Antarctica matters. Soc Sci Hum Open 2(1):100054
Zhang L, Jackson CB, Mou H et al (2020) The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv
Planas D, Bruel T, Grzelak L et al (2021) Sensitivity of infectious SARS-CoV-2 B. 1.1. 7 and B. 1.351 variants to neutralizing antibodies. Nat Med 27(5):917–924
pubmed: 33772244 doi: 10.1038/s41591-021-01318-5
Collier DA, De Marco A, Ferreira IA et al (2021) Sensitivity of SARS-CoV-2 B. 1.1. 7 to mRNA vaccine-elicited antibodies. Nature 593(7857):136–141
pubmed: 33706364 doi: 10.1038/s41586-021-03412-7
Kirby T (2021) New variant of SARS-CoV-2 in UK causes surge of COVID-19. Lancet Respir Med 9(2):e20-21
pubmed: 33417829 pmcid: 7784534 doi: 10.1016/S2213-2600(21)00005-9
da Silva JC, Felix VB, Leão SABF et al (2021) New Brazilian variant of the SARS-CoV-2 (P1) of COVID-19 in Alagoas state. Braz J Infect Dis 25(3):101588
pubmed: 34102147 pmcid: 8133383 doi: 10.1016/j.bjid.2021.101588
Kirola L (2021) Genetic emergence of B. 1.617. 2 in COVID-19. New Microbes New Infect 43:100929
pubmed: 34336227 pmcid: 8302888 doi: 10.1016/j.nmni.2021.100929
Liu L, Iketani S, Guo Y et al (2022) Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602:676–681
pubmed: 35016198 doi: 10.1038/s41586-021-04388-0
Worldometers.info. COVID-19 CORONAVIRUS PANDEMIC. 2021. worldometers.info/coronavirus/
Belouzard S, Millet JK, Licitra BN et al (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6):1011–1033
pubmed: 22816037 pmcid: 3397359 doi: 10.3390/v4061011
Hulswit RJG, De Haan CAM, Bosch BJ (2016) Coronavirus spike protein and tropism changes. Adv Virus Res 96:29–57
pubmed: 27712627 pmcid: 7112277 doi: 10.1016/bs.aivir.2016.08.004
Walls AC, Xiong X, Park YJ et al (2019) Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176(5):1026–1039
pubmed: 30712865 pmcid: 6751136 doi: 10.1016/j.cell.2018.12.028
Walls AC, Park YJ, Tortorici MA et al (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281–292
pubmed: 32155444 pmcid: 7102599 doi: 10.1016/j.cell.2020.02.058
Wong MC, Cregeen SJJ, Ajami NJ et al (2020) Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. BioRxiv
Wan Y, Shang J, Graham R et al (2020) Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 94(7):e00127-e220
pubmed: 31996437 pmcid: 7081895 doi: 10.1128/JVI.00127-20
Othman H, Bouslama Z, Brandenburg JT et al (2020) Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem Biophys Res Commun 527(3):702–708
pubmed: 32410735 pmcid: 7221370 doi: 10.1016/j.bbrc.2020.05.028
Kuba K, Imai Y, Ohto-Nakanishi T et al (2010) Trilogy of ACE2: a peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther 128(1):119–128
pubmed: 20599443 pmcid: 7112678 doi: 10.1016/j.pharmthera.2010.06.003
Imai Y, Kuba K, Ohto-Nakanishi T et al (2010) Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J 74(3):405–410
pubmed: 20134095 doi: 10.1253/circj.CJ-10-0045
Coutard B, Valle C, de Lamballerie X et al (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir Res 176:104742
pubmed: 32057769 doi: 10.1016/j.antiviral.2020.104742
Zhang T, Wu Q, Zhang Z (2020) Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 30(7):1346–1351
pubmed: 32197085 pmcid: 7156161 doi: 10.1016/j.cub.2020.03.022
Xu X, Chen P, Wang J et al (2020) Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63(3):457–460
pubmed: 32009228 pmcid: 7089049 doi: 10.1007/s11427-020-1637-5
Wrapp D, Wang N, Corbett KS et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260–1263
pubmed: 32075877 pmcid: 7164637 doi: 10.1126/science.abb2507
Wang Q, Qiu Y, Li J et al (2020) A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility. Virol Sin 35(3):337–339
pubmed: 32198713 pmcid: 7091172 doi: 10.1007/s12250-020-00212-7
Lu G, Wang Q, Gao GF (2015) Bat-to-human: spike features determining ‘host jump’of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol 23(8):468–478
pubmed: 26206723 pmcid: 7125587 doi: 10.1016/j.tim.2015.06.003
Jaimes JA, André NM, Chappie JS et al (2020) Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically-sensitive activation loop. J Mol Biol 432(10):3309–3325
pubmed: 32320687 pmcid: 7166309 doi: 10.1016/j.jmb.2020.04.009
Diao B, Wang C, Tan Y et al (2020) Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 11:827
pubmed: 32425950 pmcid: 7205903 doi: 10.3389/fimmu.2020.00827
Gurung AB, Ali MA, Lee J et al (2020) Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sci 255:117831
pubmed: 32450166 pmcid: 7243810 doi: 10.1016/j.lfs.2020.117831
Bacha U, Barrila J, Velazquez-Campoy A et al (2004) Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry 43(17):4906–4912
pubmed: 15109248 doi: 10.1021/bi0361766
Ul-Qamar MT, Alqahtani SM, Alamri MA et al (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 10(4):313-319
Gao X, Qin B, Chen P et al (2021) Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm Sin B 11(1):237–245
pubmed: 32895623 doi: 10.1016/j.apsb.2020.08.014
Fu Z, Huang B, Tang J et al (2021) The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat Commun 12(1):1–12
doi: 10.1038/s41467-020-20718-8
Garg S, Roy A (2020) In silico analysis of selected alkaloids against main protease (Mpro) of SARS-CoV-2. Chem Biol Interact 332:109309
pubmed: 33181114 pmcid: 7649659 doi: 10.1016/j.cbi.2020.109309
Hillen HS, Kokic G, Farnung L et al (2020) Structure of replicating SARS-CoV-2 polymerase. Nature 584(7819):154–156
pubmed: 32438371 doi: 10.1038/s41586-020-2368-8
Shang B, Wang XY, Yuan JW et al (2005) Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus. Biochem Biophys Res Commun 336(1):110–117
pubmed: 16112641 pmcid: 7092910 doi: 10.1016/j.bbrc.2005.08.032
Hurst KR, Koetzner CA, Masters PS (2009) Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol 83(14):7221–7234
pubmed: 19420077 pmcid: 2704785 doi: 10.1128/JVI.00440-09
Saikatendu KS, Joseph JS, Subramanian V et al (2007) Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol 81(8):3913–3921
pubmed: 17229691 pmcid: 1866093 doi: 10.1128/JVI.02236-06
He R, Dobie F, Ballantine M et al (2004) Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 316(2):476–483
pubmed: 15020242 pmcid: 7111152 doi: 10.1016/j.bbrc.2004.02.074
Zeng W, Liu G, Ma H et al (2020) Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun 527(3):618–623
pubmed: 32416961 pmcid: 7190499 doi: 10.1016/j.bbrc.2020.04.136
Ahmed SF, Quadeer AA, McKay MR (2020) Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12(3):254
pmcid: 7150947 doi: 10.3390/v12030254
Guo L, Ren L, Yang S et al (2020) Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis 71(15):778–785
pubmed: 32198501 doi: 10.1093/cid/ciaa310
Bianchi M, Benvenuto D, Giovanetti M et al (2020) Sars-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? Biomed Res Int 2020:1–6
doi: 10.1155/2020/4389089
Thomas S (2020) The structure of the membrane protein of sars-cov-2 resembles the sugar transporter semiSWEET. Pathog Immun 5(1):342–363
pubmed: 33154981 pmcid: 7608487 doi: 10.20411/pai.v5i1.377
Duart G, García-Murria MJ, Grau B et al (2020) SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biol 10(9):200209
pubmed: 32898469 pmcid: 7536074 doi: 10.1098/rsob.200209
Millet JK, Whittaker GR (2015) Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res 202:120–134
pubmed: 25445340 doi: 10.1016/j.virusres.2014.11.021
Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78(4):779–784
pubmed: 32362314 pmcid: 7194065 doi: 10.1016/j.molcel.2020.04.022
Vankadari N (2020) Structural interactions between pandemic SARS-CoV-2 spike glycoprotein and human Furin protease. BioRxiv
Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280
pubmed: 32142651 pmcid: 7102627 doi: 10.1016/j.cell.2020.02.052
Bestle D, Heindl MR, Limburg H et al (2020) TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 3(9):e202000786
pubmed: 32703818 pmcid: 7383062 doi: 10.26508/lsa.202000786
Yamada S, Fukushi S, Kinoshita H et al (2021) Assessment of SARS-CoV-2 infectivity of upper respiratory specimens from COVID-19 patients by virus isolation using VeroE6/TMPRSS2 cells. BMJ Open Respir Res 8(1):e000830
pubmed: 33627333 doi: 10.1136/bmjresp-2020-000830
Bittmann S, Luchter E, Moschüring-Alieva E et al (2020) 19: Camostat and the role of serine protease entry inhibitor TMPRSS2. J Regen Biol Med 2(2):1–2
Habtemariam S, Nabavi SF, Ghavami S et al (2020) Possible use of the mucolytic drug, bromhexine hydrochloride, as a prophylactic agent against SARS-CoV-2 infection based on its action on the transmembrane serine protease 2. Pharmacol Res 157:104853
pubmed: 32360584 pmcid: 7192109 doi: 10.1016/j.phrs.2020.104853
Zhao MM, Yang WL, Yang FY et al (2021) Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther 6(1):1–12
doi: 10.1038/s41392-021-00558-8
Zhang J, Ma X, Yu F et al (2020) Teicoplanin potently blocks the cell entry of 2019-nCoV. BioRxiv
Ou X, Liu Y, Lei X et al (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1):1–12
doi: 10.1038/s41467-020-15562-9
Kumar D, Chauhan G, Kalra S et al (2020) A perspective on potential target proteins of COVID-19: comparison with SARS-CoV for designing new small molecules. Bioorg Chem 104:104326
pubmed: 33142431 pmcid: 7524440 doi: 10.1016/j.bioorg.2020.104326
Holshue ML, DeBolt C, Lindquist S et al (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med 382:929–936
pubmed: 32004427 pmcid: 7092802 doi: 10.1056/NEJMoa2001191
Yao X, Ye F, Zhang M et al (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 71(15):732–739
pubmed: 32150618 doi: 10.1093/cid/ciaa237
Grein J, Ohmagari N, Shin D et al (2020) Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 382(24):2327–2336
pubmed: 32275812 doi: 10.1056/NEJMoa2007016
Terali K, Baddal B, Gülcan HO (2020) Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: insights from a molecular mechanics-assisted structure-based virtual screening experiment. J Mol Graph Model 100:107697
pubmed: 32739642 pmcid: 7377801 doi: 10.1016/j.jmgm.2020.107697
Bhati S (2020) Structure-based drug designing of naphthalene based SARS-CoV PLpro inhibitors for the treatment of COVID-19. Heliyon 6(11):e05558
pubmed: 33251371 pmcid: 7679114 doi: 10.1016/j.heliyon.2020.e05558
Beigel JH, Nam HH, Adams PL et al (2019) Advances in respiratory virus therapeutics–A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res 167:45–67
pubmed: 30974127 pmcid: 7132446 doi: 10.1016/j.antiviral.2019.04.006
Chen L, Xiong J, Bao L et al (2020) Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 20(4):398–400
pubmed: 32113510 pmcid: 7128218 doi: 10.1016/S1473-3099(20)30141-9
Shen C, Wang Z, Zhao F et al (2020) Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 323(16):1582–1589
pubmed: 32219428 pmcid: 7101507 doi: 10.1001/jama.2020.4783
Derebail VK, Falk RJ (2020) ANCA-associated vasculitis: refining therapy with plasma exchange and glucocorticoids. N Engl J Med 382(7):671–673
pubmed: 32053306 doi: 10.1056/NEJMe1917490
Hammer Q, Rückert T, Romagnani C (2018) Natural killer cell specificity for viral infections. Nat Immunol 19(8):800–808
pubmed: 30026479 doi: 10.1038/s41590-018-0163-6
Ortiz LA, DuTreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci 104(26):11002–11007
pubmed: 17569781 pmcid: 1891813 doi: 10.1073/pnas.0704421104
Gupta N, Su X, Popov B et al (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179(3):1855–1863
pubmed: 17641052 doi: 10.4049/jimmunol.179.3.1855
Matthay MA, Goolaerts A, Howard JP et al (2010) Mesenchymal stem cells for acute lung injury: preclinical evidence. Crit Care Med 38(10 Suppl):S569–S573
pubmed: 21164399 pmcid: 3580946 doi: 10.1097/CCM.0b013e3181f1ff1d
Kumamoto M, Nishiwaki T, Matsuo N et al (2009) Minimally cultured bone marrow mesenchymal stem cells ameliorate fibrotic lung injury. Eur Respir J 34(3):740–748
pubmed: 19324956 doi: 10.1183/09031936.00128508
El Agha E, Kramann R, Schneider RK et al (2017) Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21(2):166–177
pubmed: 28777943 doi: 10.1016/j.stem.2017.07.011
Yang ZY, Kong WP, Huang Y et al (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428(6982):561–564
pubmed: 15024391 pmcid: 7095382 doi: 10.1038/nature02463
Kaul D (2020) An overview of coronaviruses including the SARS-2 coronavirus–Molecular biology, epidemiology and clinical implications. Curr Med Res Pract 10(2):54–64
pubmed: 32363221 pmcid: 7194867 doi: 10.1016/j.cmrp.2020.04.001
Wang F, Kream RM, Stefano GB (2020) An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit: Int Med J Exp Clin Res 26:e924700–e924701
Le TT, Andreadakis Z, Kumar A et al (2020) The COVID-19 vaccine development landscape. Nat Rev Drug Discov 19(5):305–306
doi: 10.1038/d41573-020-00073-5
Arya R, Kumari S, Pandey B et al (2021) Structural insights into SARS-CoV-2 proteins. J Mol Biol 433(2):166725
pubmed: 33245961 doi: 10.1016/j.jmb.2020.11.024
Singh AK, Singh A, Singh R et al (2021) Molnupiravir in COVID-19: a systematic review of literature. Diabetes Metab Syndr 15(6):102329
pubmed: 34742052 pmcid: 8556684 doi: 10.1016/j.dsx.2021.102329
Fishbane S, Hirsch JS, Nair V (2022) Special considerations for paxlovid treatment among transplant recipients with SARS-CoV-2 infection. Am J Kidney Dis 79(4):480–482
pubmed: 35032591 pmcid: 8754454 doi: 10.1053/j.ajkd.2022.01.001
Meini S, Pagotto A, Longo B et al (2020) Role of Lopinavir/Ritonavir in the treatment of Covid-19: a review of current evidence, guideline recommendations, and perspectives. J Clin Med 9(7):2050
pmcid: 7408758 doi: 10.3390/jcm9072050
Lin C, Li Y, Zhang Y et al (2021) Ceftazidime is a potential drug to inhibit SARS-CoV-2 infection in vitro by blocking spike protein–ACE2 interaction. Signal Transduct Target Ther 6(1):1–4
O’Brien MP, Neto EF, Chen KC et al (2021) Casirivimab with imdevimab antibody cocktail for COVID-19 prevention: interim results. Top Antivir Med 29(1):33–34
Westendorf K, Žentelis S, Wang L et al (2022) LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep 39(7):110812
pubmed: 35568025 pmcid: 9035363 doi: 10.1016/j.celrep.2022.110812
Gottlieb RL, Nirula A, Chen P et al (2021) Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 325(7):632–644
pubmed: 33475701 pmcid: 7821080 doi: 10.1001/jama.2021.0202
Gupta A, Gonzalez-Rojas Y, Juarez E et al (2021) Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med 385(21):1941–1950
pubmed: 34706189 doi: 10.1056/NEJMoa2107934
Mode D, Stockholm LC AstraZeneca: Evusheld (formerly AZD7442) long-acting antibody combination authorised for emergency use in the US for pre-exposure prophylaxis (prevention) of COVID-19

Auteurs

Rubia Noori (R)

Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.

Meryam Sardar (M)

Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India. msardar@jmi.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH