Resolving missing protein problems using functional class scoring.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
05 07 2022
05 07 2022
Historique:
received:
24
12
2021
accepted:
22
06
2022
entrez:
5
7
2022
pubmed:
6
7
2022
medline:
8
7
2022
Statut:
epublish
Résumé
Despite technological advances in proteomics, incomplete coverage and inconsistency issues persist, resulting in "data holes". These data holes cause the missing protein problem (MPP), where relevant proteins are persistently unobserved, or sporadically observed across samples, hindering biomarker discovery and proper functional characterization. Network-based approaches can provide powerful solutions for resolving these issues. Functional Class Scoring (FCS) is one such method that uses protein complex information to recover missing proteins with weak support. However, FCS has not been evaluated on more recent proteomic technologies with higher coverage, and there is no clear way to evaluate its performance. To address these issues, we devised a more rigorous evaluation schema based on cross-verification between technical replicates and evaluated its performance on data acquired under recent Data-Independent Acquisition (DIA) technologies (viz. SWATH). Although cross-replicate examination reveals some inconsistencies amongst same-class samples, tissue-differentiating signal is nonetheless strongly conserved, confirming that FCS selects for biologically meaningful networks. We also report that predicted missing proteins are statistically significant based on FCS p values. Despite limited cross-replicate verification rates, the predicted missing proteins as a whole have higher peptide support than non-predicted proteins. FCS also predicts missing proteins that are often lost due to weak specific peptide support.
Identifiants
pubmed: 35790756
doi: 10.1038/s41598-022-15314-3
pii: 10.1038/s41598-022-15314-3
pmc: PMC9256666
doi:
Substances chimiques
Peptides
0
Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11358Informations de copyright
© 2022. The Author(s).
Références
Nat Biotechnol. 2014 Mar;32(3):219-23
pubmed: 24727770
Drug Discov Today. 2016 Jul;21(7):1130-8
pubmed: 27240775
J Bioinform Comput Biol. 2016 Oct;14(5):1650029
pubmed: 27640811
J Neurosci. 2013 Jun 19;33(25):10348-61
pubmed: 23785148
Genome Res. 2012 Sep;22(9):1775-89
pubmed: 22955988
PLoS One. 2013;8(2):e53197
pubmed: 23405067
BMC Bioinformatics. 2011;12 Suppl 13:S15
pubmed: 22372958
J Proteome Res. 2015 May 1;14(5):1993-2001
pubmed: 25855118
Pac Symp Biocomput. 2002;:474-85
pubmed: 11928500
Trends Biotechnol. 2017 Jun;35(6):498-507
pubmed: 28351613
Nature. 2014 Sep 18;513(7518):382-7
pubmed: 25043054
J Proteome Res. 2017 Aug 4;16(8):3102-3112
pubmed: 28664733
Nucleic Acids Res. 2002 Jan 1;30(1):31-4
pubmed: 11752246
Nucleic Acids Res. 2019 Jan 8;47(D1):D559-D563
pubmed: 30357367
Mol Syst Biol. 2009;5:303
pubmed: 19690572
J Bioinform Comput Biol. 2019 Apr;17(2):1950013
pubmed: 31057071
Science. 2012 Dec 21;338(6114):1587-93
pubmed: 23258890
J Proteome Res. 2013 May 3;12(5):2116-27
pubmed: 23557376
J Proteome Res. 2016 Sep 2;15(9):3167-79
pubmed: 27454466
Bioinformatics. 2012 Feb 15;28(4):453-6
pubmed: 22180412
Mol Cell Proteomics. 2012 Jun;11(6):O111.016717
pubmed: 22261725
Nat Med. 2015 Apr;21(4):407-13
pubmed: 25730263
Anal Chem. 2012 Sep 4;84(17):7469-78
pubmed: 22880955
Nature. 2009 Jul 30;460(7255):642-6
pubmed: 19561591
J Proteome Res. 2017 Dec 1;16(12):4446-4454
pubmed: 28965417
Cancer Res. 2012 Apr 15;72(8):1921-8
pubmed: 22496456
Trends Biotechnol. 2016 Dec;34(12):951-959
pubmed: 27312055
Genome Biol. 2007;8(11):R252
pubmed: 18042286