Silencing Itch in human peripheral blood monocytes promotes their differentiation into osteoclasts.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 13 04 2022
accepted: 15 06 2022
pubmed: 7 7 2022
medline: 14 9 2022
entrez: 6 7 2022
Statut: ppublish

Résumé

Two clinical case reports of humans with mutations in Itch reported distinct morphological defects such as stunted growth, macrocephaly, and dysmorphic features indicating a role for Itch in bone remodelling. Studies in mice have found that the encoded E3 ubiquitin ligase acts as a negative regulator of osteoclastogenesis, however no studies have investigated whether this is translatable to a human model. Human peripheral blood monocytes were separated from whole blood and grown in M-CSF containing media. Media was later supplemented with RANKL to promote osteoclast differentiation. Transient siRNA-mediated Itch knockdown (si-Itch) in monocytes was verified by qPCR and western blot to confirm reduction in both Itch mRNA and protein respectively. Monocytes were aliquoted onto 96-well plates where confluence and osteoclast formation were analysed using automated cytometry analysis before and after staining for tartrate resistant acid phosphatase activity (TRAP). Cells were also stained with Hoechst33342 to look for multinucleate cells. Cells treated with si-Itch showed an 80% knockdown in Itch mRNA and > 75% reduction in protein. Following the 7-day differentiation period, si-Itch caused a 47% increase in multinucleate cells and a 17% increase in numbers of large cellular bodies and, indicating an overall increase in mature osteoclast formation. Our preliminary data shows silencing Itch expression increases the potential of primary human monocytes to differentiate into osteoclast-like cells in vitro.

Identifiants

pubmed: 35793050
doi: 10.1007/s11033-022-07726-1
pii: 10.1007/s11033-022-07726-1
pmc: PMC9463264
doi:

Substances chimiques

RNA, Messenger 0
Ubiquitin-Protein Ligases EC 2.3.2.27
Tartrate-Resistant Acid Phosphatase EC 3.1.3.2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9113-9119

Informations de copyright

© 2022. The Author(s).

Références

Perry WL, Hustad CM, Swing DA, O’Sullivan TN, Jenkins NA, Copeland NG (1998) The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat Genet 18(2):143–146. https://doi.org/10.1038/ng0298-143
doi: 10.1038/ng0298-143 pubmed: 9462742
Fang D et al (2002) Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat Immunol 3(3):281–287. https://doi.org/10.1038/ni763
doi: 10.1038/ni763 pubmed: 11828324
Aki D, Zhang W, Liu Y-C (2015) The E3 ligase Itch in immune regulation and beyond. Immunol Rev 266(1):6–26. https://doi.org/10.1111/imr.12301
doi: 10.1111/imr.12301 pubmed: 26085204
Xiao N, Eto D, Elly C, Peng G, Crotty S, Liu Y-C (2014) The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat Immunol 15(7):657–666. https://doi.org/10.1038/ni.2912
doi: 10.1038/ni.2912 pubmed: 24859451 pmcid: 4289613
Lohr NJ et al (2010) Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am J Hum Genet 86(3):447–453. https://doi.org/10.1016/j.ajhg.2010.01.028
doi: 10.1016/j.ajhg.2010.01.028 pubmed: 20170897 pmcid: 2833372
Brittain HK, Feary J, Rosenthal M, Spoudeas H, Wilson LC, Wilson LC (2019) Biallelic human ITCH variants causing a multisystem disease with dysmorphic features: a second report. Am J Med Genet Part A. https://doi.org/10.1002/ajmg.a.61169
doi: 10.1002/ajmg.a.61169 pubmed: 31091003
Jilka RL (2013) The relevance of mouse models for investigating age-related bone loss in humans. J Gerontol Ser A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glt046
doi: 10.1093/gerona/glt046
Youlten SE, Baldock PA (2019) Using mouse genetics to understand human skeletal disease. Bone. https://doi.org/10.1016/j.bone.2019.02.015
doi: 10.1016/j.bone.2019.02.015 pubmed: 30776501
Zhang H et al (2013) Ubiquitin E3 ligase Itch negatively regulates osteoclast formation by promoting deubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6. J Biol Chem 288(31):22359–22368. https://doi.org/10.1074/jbc.M112.442459
doi: 10.1074/jbc.M112.442459 pubmed: 23782702 pmcid: 3829326
Li X et al (2017) Clomipramine causes osteoporosis by promoting osteoclastogenesis via E3 ligase Itch, which is prevented by Zoledronic acid. Sci Rep 7:41358. https://doi.org/10.1038/srep41358
doi: 10.1038/srep41358 pubmed: 28145497 pmcid: 5286409
Zhang H, Xing L (2013) Ubiquitin E3 ligase itch negatively regulates osteoblast differentiation from mesenchymal progenitor cells. Stem Cells 31(8):1574–1583. https://doi.org/10.1002/stem.1395
doi: 10.1002/stem.1395 pubmed: 23606569
Simonet WS et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309
doi: 10.1016/S0092-8674(00)80209-3
Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1. https://doi.org/10.1186/ar2165
doi: 10.1186/ar2165 pubmed: 17634140 pmcid: 1924516
Kim JH, Kim N (2016) Signaling pathways in osteoclast differentiation. Chonnam Med J 52(1):12–17. https://doi.org/10.4068/cmj.2016.52.1.12
doi: 10.4068/cmj.2016.52.1.12 pubmed: 26865996 pmcid: 4742606
Ikeda K, Takeshita S (2016) The role of osteoclast differentiation and function in skeletal homeostasis. J Biochem 159(1):1–8. https://doi.org/10.1093/jb/mvv112
doi: 10.1093/jb/mvv112 pubmed: 26538571
Lamothe B, Webster WK, Gopinathan A, Besse A, Campos AD, Darnay BG (2007) TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun 359(4):1044–1049. https://doi.org/10.1016/j.bbrc.2007.06.017
doi: 10.1016/j.bbrc.2007.06.017 pubmed: 17572386 pmcid: 2732028
Lomaga MA et al (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. https://doi.org/10.1101/gad.13.8.1015
doi: 10.1101/gad.13.8.1015 pubmed: 10215628 pmcid: 316636
Jin W et al (2008) Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Investig 118(5):1858–1866. https://doi.org/10.1172/JCI34257
doi: 10.1172/JCI34257 pubmed: 18382763 pmcid: 2276399
Qi L, Wang M, He J, Jia B, Ren J, Zheng S (2022) E3 ubiquitin ligase ITCH improves LPS-induced chondrocyte injury by mediating JAG1 ubiquitination in osteoarthritis. Chem Biol Interact 360:109921. https://doi.org/10.1016/J.CBI.2022.109921
doi: 10.1016/J.CBI.2022.109921 pubmed: 35385713
Rao H, Tan J, Faruqi F, Beltzer J (2010) Corning ® Osteo assay surface: a new tool to study osteoclast and osteoblast differentiation and function. https://www.corning.com/media/worldwide/cls/documents/snappshots_CLS_AN_144_osteo_assay.pdf . Accessed 28 Nov 2017
Tsuboi H et al (2003) Tartrate resistant acid phosphatase (TRAP) positive cells in rheumatoid synovium may induce the destruction of articular cartilage. Ann Rheum Dis 62:196–203
doi: 10.1136/ard.62.3.196
Liu J et al. (2017) Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Jt Res 6(3). http://www.bjr.boneandjoint.org.uk/content/6/3/154.long#ref-11 . Accessed 23 May 2017
Rossi M et al (2014) High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy. Cell Death Dis 5:e1203. https://doi.org/10.1038/cddis.2014.113
doi: 10.1038/cddis.2014.113 pubmed: 24787015 pmcid: 4047876
Vestergaard P, Rejnmark L, Mosekilde L (2008) Selective serotonin reuptake inhibitors and other antidepressants and risk of fracture. Calcif Tissue Int 82(2):92–101. https://doi.org/10.1007/s00223-007-9099-9
doi: 10.1007/s00223-007-9099-9 pubmed: 18219438

Auteurs

O J Read (OJ)

Pathology Department, School of Medicine, University of St Andrews, St Andrews, UK. ojr2@st-andrews.ac.uk.

D J Harrison (DJ)

Pathology Department, School of Medicine, University of St Andrews, St Andrews, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH