The introduced strain Mesorhizobium ciceri USDA 3378 is more competitive than an indigenous strain in nodulation of chickpea in newly introduced areas of China.


Journal

Letters in applied microbiology
ISSN: 1472-765X
Titre abrégé: Lett Appl Microbiol
Pays: England
ID NLM: 8510094

Informations de publication

Date de publication:
Nov 2022
Historique:
revised: 28 06 2022
received: 09 05 2022
accepted: 29 06 2022
pubmed: 7 7 2022
medline: 26 10 2022
entrez: 6 7 2022
Statut: ppublish

Résumé

The present study aimed to compare the competitive advantage of two chickpea nodulating rhizobia strains (an indigenous strain Mesorhizobium muleiense CCBAU 83963

Identifiants

pubmed: 35793390
doi: 10.1111/lam.13785
doi:

Substances chimiques

Soil 0
Chlorophyll 1406-65-1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1171-1181

Subventions

Organisme : National Natural Science Foundation of China
ID : 31970006
Organisme : Project of Henan University Science and Technology Innovation Talent Support Program
ID : 22HASTIT035

Informations de copyright

© 2022 Society for Applied Microbiology.

Références

Adesemoye, A.O., Torbert, H.A. and Kloepper, J.W. (2010) Increased plant uptake of nitrogen from N-15-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46, 54-58.
Ahmad, M., Naseer, I., Hussain, A., Mumtaz, M.Z. and Xu, M. (2019) Appraising endophyte-plant symbiosis for improved growth, nodulation, nitrogen fixation and abiotic stress tolerance: an experimental investigation with chickpea (Cicer arietinum L.). Agron J 9, 621-641.
Alexandre, A., Brígido, C., Laranjo, M., Rodrigues, S. and Oliveira, S. (2009) Survey of chickpea rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microb Ecol 58, 930-941.
Armas-Capote, N., Perez-Yepez, J., Martinez-Hidalgo, P., Garzon-Machado, V., del Arco-Aguilar, M., Velazquez, E. and Leon-Barrios, M. (2014) Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands). Syst Appl Microbiol 37, 140-148.
Ballard, R.A., Charman, N., Mcinnes, A. and Davidson, J.A. (2004) Size, symbiotic effectiveness and genetic diversity of field pea rhizobia (rhizobium leguminosarum bv. Viciae) populations in south Australian soils. Soil Biol Biochem 36, 1347-1355.
Batista, J., Hungria, M., Barcellos, F.G., Ferreira, M.C. and Mendes, I.C. (2007) Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a Cerrados soil. Microb Ecol 53, 270-284.
Beltayef, H., Melki, M., Saidi, W., Samaali, S. and Garoui, T. (2018) Betterment of biological nitrogen fixation in snap bean under Mediterranean semi-arid conditions. Bulg J Agric Sci 24, 244-251.
Ben Romdhane, S., Tajini, F., Trabelsi, M., Aouani, M.E. and Mhamdi, R. (2007) Competition for nodule formation between introduced strains of Mesorhizobium ciceri and the native populations of rhizobia nodulating chickpea (Cicer arietinum) in Tunisia. World J Microb Biotechnol 23, 1195-1201.
Caetano-Anollés, G., Wall, L.G., Micheli, A., Macchi, E.M. and Favelukes, G. (1988) Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol 86, 1228-1235.
Chi, F., Shen, S.H., Cheng, H.P., Jing, Y.X., Yanni, Y.G. and Dazzo, F. (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71, 7271-7278.
Drew, E.A. and Ballard, R.A. (2010) Improving N2 fixation from the plant down: compatibility of Trifolium subterraneum L. cultivars with soil rhizobia can influence symbiotic performance. Plant and Soil 327, 261-277.
Ehmann, W.J. (1977) Process for the oxidation of primary allylic alcohols. In US. US4055601 A.
Elias, N.V. and Herridge, D.F. (2015) Naturalised populations of mesorhizobia in chickpea (Cicer arietinum L.) cropping soils: effects on nodule occupancy and productivity of commercial chickpea. Plant and Soil 387, 233-249.
Evans, J. (2005) An evaluation of potential rhizobium inoculant strains used for pulse production in acidic soils of south-East Australia. Aust J Exp Agr 45, 257-268.
Flajsman, M., Santavec, I., Kolmanic, A. and Acko, D.K. (2019) Bacterial seed inoculation and row spacing affect the nutritional composition and agronomic performance of soybean. Int J Plant Prod 13, 183-192.
Gunnabo, A.H., Heerwaarden, J.V., Geurts, R., Wolde-Meskel, E. and Giller, K.E. (2020) Symbiotic interactions between chickpea (Cicer arietinum L.) genotypes and Mesorhizobium strains. Symbiosis 11, 24 Z-248.
Han, Q., Ma, Q., Chen, Y., Tian, B., Xu, L., Bai, Y., Chen, W. and Li, X. (2020) Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J 14, 1915-1928.
Jain, D., Sanadhya, S., Saheewala, H., Maheshwari, D., Shukwal, A., Singh, P.B., Meena, R.H., Choudhary, R. et al. (2020) Molecular diversity analysis of plant growth promoting rhizobium isolated from groundnut and evaluation of their field efficacy. Curr Microbiol 77, 1550-1557.
James, E.K., Gyaneshwar, P., Mathan, N., Barraquio, W.L. and Ladha, J.K. (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15, 894-906.
Khamna, S., Yokota, A. and Lumyong, S. (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microb Biot 25, 649-655.
Kyei-Boahen, S., Slinkard, A. and Walley, F.L. (2002) Evaluation of rhizobial inoculation methods for chickpea. Agron J 94, 851-859.
Laranjo, M., Jorge, M., Young, J. and Solange, O. (2010) High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiol Ecol, 48, 101-107.
Liu, W., Sun, Y., Shen, R.M., Dang, X.X., Liu, X.L., Sui, F., Li, Y., Zhang, Z.P. et al. (2018) A chemotaxis-like pathway of Azorhizobium caulinodans controls flagella-driven motility, which regulates biofilm formation, exopolysaccharide biosynthesis, and competitive nodulation. Mol Plant Microbe In 31, 737-749.
Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T., Andrew, P., Prudhomme, M. et al. (1992) A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20, 3479-3483.
Massa, N., Cesaro, P., Todeschini, V., Capraro, J., Scarafoni, A., Cantamessa, S., Copetta, A., Anastasia, F. et al. (2020) Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition. Appl Soil Ecol 148. https://doi.org/10.1016/j.apsoil.2020.103507
Matallah, J., Berraho, E.B., Muoz, S., Sanjuan, J. and Lluch, C. (2002) Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. J Appl Microbiol 93, 531-540.
Mendoza, B., Ortega, R., Miguel, G.J., Ramos, C.B. and Campos, M. (2021) Organic cultivation of two species of pitahaya (Selenicereus untaus and S. megalanthus) in the southeast of Mexico. Horticulture Int J 5, 1-5.
Merritt, P.M., Danhorn, T. and Fuqua, C. (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189, 8005-8014.
Mitra, S., Mukherjee, A., Wiley-Kalil, A., Das, S., Owen, H., Reddy, P.M., Ané, J.-M., James, E.K. et al. (2016) A rhamnose-deficient lipopolysaccharide mutant of Rhizobium sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts Sesbania cannabina and wetland rice. J Exp Bot 67, 5869-5884.
Mothapo, N.V., Grossman, J.M., Sooksa-nguan, T. and Maul, J. (2013) Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth.) genotypes with resident soil rhizobia. Biol Fert Soils 49, 871-879.
Nandasena, K.G., O'Hara, G.W., Tiwari, R.P., Sezmiş, E. and Howieson, J.G. (2010) In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environ Microbiol 9, 2496-2511.
Nour, S.M., Fernandez, M.P., Normand, P. and Cleyet-Marel, J.C. (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44, 511-522.
Okazaki, S., Nukui, N., Sugawara, M. and Minamisawa, K. (2004) Rhizobial strategies to enhance symbiotic interactions: Rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ 19, 99-111.
Ozdemir, S., Ozdemir, S., Ozer, H. and Yetilmezsoy, K. (2021) A techno-sustainable bio-waste management strategy for closing chickpea yield gap. Waste Manage (New York, NY) 119, 356-364.
Patten, C.L. and Glick, B.R. (2002) Role of pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microb 68, 3795-3801.
Rinaudi, L.V. and Walter, G. (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304, 1-11.
Rivas, R., Velázquez, E., Willems, A., Vizcaíno, N. and Martínez-Molina, E. (2002) A new species of devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl Environ Microbiol 68, 5217-5222.
Rodriguez-Navarro, D.N., Margaret Oliver, I., Albareda Contreras, M. and Ruiz-Sainz, J.E. (2011) Soybean interactions with soil microbes, agronomical and molecular aspects. Agron Sustain Dev 31, 173-190.
da Silva, J.R., Menendez, E., Eliziario, F., Mateos, P.F., Alexandre, A. and Oliveira, S. (2019) Heterologous expression of nifA or nodD genes improves chickpea-Mesorhizobium symbiotic performance. Plant and Soil 436, 607-621.
Singh, R.P., Manchanda, G., Yang, Y.J., Singh, D., Srivastava, A.K., Dubey, R.C. and Zhang, C.S. (2019) Deciphering the factors for nodulation and symbiosis of Mesorhizobium associated with Cicer arietinum in Northwest India. Sustainability 11, 18.
Siuti, P., Green, C., Edwards, A.N., Doktycz, M.J. and Alexandre, G. (2011) The chemotaxis-like Che1 pathway has an indirect role in adhesive cell properties of Azospirillum brasilense. FEMS Microbiol Lett 323, 105-112.
Slatteryac, J.F. (2001) Rhizobial ecology as affected by the soil environment. Anim Prod Sci 41, 289-298.
Somasegaran, P. and Bohlool, B.B. (1990) Single-strain versus multistrain inoculation: effect of soil mineral N availability on rhizobial strain effectiveness and competition for nodulation on chickpea, soybean, and dry bean. Appl Environ Microb 56, 3298-3303.
Spaepen, S., Vanderleyden, J. and Remans, R. (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbial Rev 31, 425-448.
Tena, W., Wolde-Meskel, E., Degefu, T. and Walley, F. (2017) Genetic and phenotypic diversity of rhizobia nodulating chickpea (Cicer arietinum L.) in soils from southern and Central Ethiopia. Can J Microbiol 63, 690-707.
Tiwari, M., Yadav, M., Singh, B., Pandey, V., Nawaz, K. and Bhatia, S. (2021) Evolutionary and functional analysis of two-component system in chickpea reveals CaRR13, a TypeB RR, as positive regulator of symbiosis. Plant Biotechnol J 19, 2415-2427.
Versalovic, J., Schneider, M., Bruijn, F.D. and Lupski, J.R. (1994) Genomic fingerprint of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5, 25-40.
Weaver, R.W. and Frederick, L.R. (1974) Effect of inoculum rate on competitive nodulation of Glycine max L. Merrill II field studies. Agron J 66, 233-236.
Yaryura, P.M., León, M., Correa, O.S., Kerber, N.L., Pucheu, N.L. and García, A. (2008) Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Curr Microbiol 56, 625-632.
Zhang, J.J., Guo, C., Chen, W.F., de Lajudie, P., Zhang, Z., Shang, Y.M. and Wang, E.T. (2018) Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China. Int J Syst Evol Microbiol 68, 1930-1936.
Zhang, J.J., Liu, T.Y., Chen, W.F., Wang, E.T., Sui, X.H., Zhang, X.X., Li, Y., Li, Y. et al. (2012a) Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol 62, 2737-2742.
Zhang, J.J., Lou, K., Jin, X., Mao, P.H., Wang, E.T., Tian, C.F., Sui, X.H., Chen, W.F. et al. (2012b) Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang. China Plant Soil 353, 123-134.
Zhang, J.J., Peng, S.S., Shang, Y.M., Brunel, B., Li, S., Zhao, Y.F., Liu, Y.F., Chen, W.F. et al. (2020) Genomic diversity of chickpea-nodulating rhizobia in Ningxia (north Central China) and gene flow within symbiotic Mesorhizobium muleiense populations. Syst Appl Microbiol 43, 7.
Zhang, J.J., Yang, X., Guo, C., de Lajudie, P., Singh, R.P., Wang, E.T. and Chen, W.F. (2017) Mesorhizobium muleiense and Mesorhizobium gsp. Nov. are symbionts of Cicer arietinum L. in alkaline soils of Gansu. Northwest China Plant Soil 410, 103-112.
Zhang, J.J., Yu, T., Lou, K., Mao, P.H., Wang, E.T., Chen, W.F. and Chen, W.X. (2014) Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Syst Appl Microbiol 37, 520-524.

Auteurs

J Zhang (J)

College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, P. R. China.
Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan Province, P. R. China.

S Li (S)

College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, P. R. China.

N Wang (N)

College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, P. R. China.

W Chen (W)

State Key Laboratory of Agrobiotechnology, Beijing, China.
College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, P. R. China.

X Feng (X)

Xinjiang Tianshan Qidou Biotechnology Co., Ltd, Urumqi, P. R. China.

B Jia (B)

Henan Fuyunwang Happy Farm Ecological Food Co. Ltd, Jia County, P. R. China.

Y Zhao (Y)

Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, P. R. China.

T Yang (T)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.

X Zong (X)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.

Articles similaires

Humans United States Aged Cross-Sectional Studies Medicare Part C
Humans Emergency Service, Hospital Child Child, Preschool Infant
Humans Mobile Applications Hepatitis C Male Female
Populus Soil Microbiology Soil Microbiota Fungi

Classifications MeSH