A deep convolutional neural network for Kawasaki disease diagnosis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 07 2022
06 07 2022
Historique:
received:
02
02
2022
accepted:
24
06
2022
entrez:
6
7
2022
pubmed:
7
7
2022
medline:
9
7
2022
Statut:
epublish
Résumé
Kawasaki disease (KD), the most common cause of acquired heart disease in children, can be easily missed as it shares clinical findings with other pediatric illnesses, leading to risk of myocardial infarction or death. KD remains a clinical diagnosis for which there is no diagnostic test, yet there are classic findings on exam that can be captured in a photograph. This study aimed to develop a deep convolutional neural network, KD-CNN, to differentiate photographs of KD clinical signs from those of other pediatric illnesses. To create the dataset, we used an innovative combination of crowdsourcing images and downloading from public domains on the Internet. KD-CNN was then pretrained using transfer learning from VGG-16 and fine-tuned on the KD dataset, and methods to compensate for limited data were explored to improve model performance and generalizability. KD-CNN achieved a median AUC of 0.90 (IQR 0.10 from tenfold cross validation), with a sensitivity of 0.80 (IQR 0.18) and specificity of 0.85 (IQR 0.19) to distinguish between children with and without clinical manifestations of KD. KD-CNN is a novel application of CNN in medicine, with the potential to assist clinicians in differentiating KD from other pediatric illnesses and thus reduce KD morbidity and mortality.
Identifiants
pubmed: 35794205
doi: 10.1038/s41598-022-15495-x
pii: 10.1038/s41598-022-15495-x
pmc: PMC9259696
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11438Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL140898
Pays : United States
Organisme : NLM NIH HHS
ID : R01 LM013998
Pays : United States
Organisme : NICHD NIH HHS
ID : R61 HD105590
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Curr Infect Dis Rep. 2016 Sep;18(10):32
pubmed: 27681743
Nature. 2017 Jun 28;546(7660):686
pubmed: 28658222
Nat Med. 2020 Jun;26(6):900-908
pubmed: 32424212
JAMA. 1991 May 22-29;265(20):2699-703
pubmed: 2023352
Artif Intell Med. 2020 May;105:101859
pubmed: 32505429
Nat Med. 2019 Jan;25(1):44-56
pubmed: 30617339
Invest Ophthalmol Vis Sci. 2016 Oct 01;57(13):5200-5206
pubmed: 27701631
Perm J. 2012 Spring;16(2):70-2
pubmed: 22745623
Insights Imaging. 2018 Aug;9(4):611-629
pubmed: 29934920
J R Soc Interface. 2018 Apr;15(141):
pubmed: 29618526
Nat Biomed Eng. 2018 Oct;2(10):719-731
pubmed: 31015651
J Healthc Eng. 2018 Aug 1;2018:4168538
pubmed: 30154989
Comput Biol Med. 2020 Jun;121:103795
pubmed: 32568676
Comput Biol Med. 2018 Jul 1;98:8-15
pubmed: 29758455
Pediatrics. 1974 Sep;54(3):271-6
pubmed: 4153258
Arch Dis Child. 2015 Nov;100(11):1084-8
pubmed: 26111818
Sci Rep. 2020 Jul 17;10(1):11868
pubmed: 32681105
Pediatr Cardiol. 2022 Apr;43(4):807-815
pubmed: 34854943
J Clin Epidemiol. 2003 Nov;56(11):1129-35
pubmed: 14615004
J Invest Dermatol. 2020 Sep;140(9):1753-1761
pubmed: 32243882
Caspian J Intern Med. 2013 Spring;4(2):627-35
pubmed: 24009950