EphA2 on urinary extracellular vesicles as a novel biomarker for bladder cancer diagnosis and its effect on the invasiveness of bladder cancer.


Journal

British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635

Informations de publication

Date de publication:
10 2022
Historique:
received: 02 12 2021
accepted: 11 05 2022
revised: 25 04 2022
pubmed: 7 7 2022
medline: 1 10 2022
entrez: 6 7 2022
Statut: ppublish

Résumé

Urinary extracellular vesicles (uEVs) secreted from bladder cancer contain cancer-specific proteins that are potential diagnostic biomarkers. We identified and evaluated a uEV-based protein biomarker for bladder cancer diagnosis and analysed its functions. Biomarker candidates, selected by shotgun proteomics, were validated using targeted proteomics of uEVs obtained from 49 patients with and 48 individuals without bladder cancer, including patients with non-malignant haematuria. We developed an enzyme-linked immunosorbent assay (ELISA) for quantifying the uEV protein biomarker without ultracentrifugation and evaluated urine samples from 36 patients with and 36 patients without bladder cancer. Thirteen membrane proteins were significantly upregulated in the uEVs from patients with bladder cancer in shotgun proteomics. Among them, eight proteins were validated by target proteomics, and Ephrin type-A receptor 2 (EphA2) was the only protein significantly upregulated in the uEVs of patients with bladder cancer, compared with that of patients with non-malignant haematuria. The EV-EphA2-CD9 ELISA demonstrated good diagnostic performance (sensitivity: 61.1%, specificity: 97.2%). We showed that EphA2 promotes proliferation, invasion and migration and EV-EphA2 promotes the invasion and migration of bladder cancer cells. We established EV-EphA2-CD9 ELISA for uEV-EphA2 detection for the non-invasive early clinical diagnosis of bladder cancer.

Sections du résumé

BACKGROUND
Urinary extracellular vesicles (uEVs) secreted from bladder cancer contain cancer-specific proteins that are potential diagnostic biomarkers. We identified and evaluated a uEV-based protein biomarker for bladder cancer diagnosis and analysed its functions.
METHODS
Biomarker candidates, selected by shotgun proteomics, were validated using targeted proteomics of uEVs obtained from 49 patients with and 48 individuals without bladder cancer, including patients with non-malignant haematuria. We developed an enzyme-linked immunosorbent assay (ELISA) for quantifying the uEV protein biomarker without ultracentrifugation and evaluated urine samples from 36 patients with and 36 patients without bladder cancer.
RESULTS
Thirteen membrane proteins were significantly upregulated in the uEVs from patients with bladder cancer in shotgun proteomics. Among them, eight proteins were validated by target proteomics, and Ephrin type-A receptor 2 (EphA2) was the only protein significantly upregulated in the uEVs of patients with bladder cancer, compared with that of patients with non-malignant haematuria. The EV-EphA2-CD9 ELISA demonstrated good diagnostic performance (sensitivity: 61.1%, specificity: 97.2%). We showed that EphA2 promotes proliferation, invasion and migration and EV-EphA2 promotes the invasion and migration of bladder cancer cells.
CONCLUSIONS
We established EV-EphA2-CD9 ELISA for uEV-EphA2 detection for the non-invasive early clinical diagnosis of bladder cancer.

Identifiants

pubmed: 35794239
doi: 10.1038/s41416-022-01860-0
pii: 10.1038/s41416-022-01860-0
pmc: PMC9519556
doi:

Substances chimiques

Biomarkers 0
EPHA2 protein, human 0
Ephrins 0
Receptor, EphA2 EC 2.7.10.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1312-1323

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Babjuk M. Trends in bladder cancer incidence and mortality: success or disappointment? Eur Urol. 2017;71:109–10. https://doi.org/10.1016/j.eururo.2016.06.040 .
pubmed: 27417034 doi: 10.1016/j.eururo.2016.06.040
Yoshida T, Kates M, Fujita K, Bivalacqua TJ, McConkey DJ. Predictive biomarkers for drug response in bladder cancer. Int J Urol. 2019;26:1044–53.
pubmed: 31370109 doi: 10.1111/iju.14082
Lotan Y, Roehrborn CG. Sensitivity and specificity of commonly available bladder tumor markers versus cytology: results of a comprehensive literature review and meta-analyses. Urology. 2003;61:109–18.
pubmed: 12559279 doi: 10.1016/S0090-4295(02)02136-2
Schmitz-Dräger BJ, Droller M, Lokeshwar VB, Lotan Y, Hudson MA, Van Rhijn BW, et al. Molecular markers for bladder cancer screening, early diagnosis, and surveillance: The WHO/ICUD consensus. Urol Int. 2015;94:1–24.
pubmed: 25501325 doi: 10.1159/000369357
Oeyen E, Hoekx L, De Wachter S, Baldewijns M, Ameye F, Mertens I. Bladder cancer diagnosis and follow-up: the current status and possible role of extracellular vesicles. Int J Mol Sci. 2019;20:821.
pmcid: 6412916 doi: 10.3390/ijms20040821
Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:1–60.
doi: 10.3402/jev.v4.27066
Liu YR, Ortiz-Bonilla CJ, Lee YF. Extracellular vesicles in bladder cancer: biomarkers and beyond. Int J Mol Sci. 2018;19:2822.
pmcid: 6165150 doi: 10.3390/ijms19092822
Fujita K, Nonomura N. Urinary biomarkers of prostate cancer. Int J Urol. 2018;25:770–9.
pubmed: 30129068 doi: 10.1111/iju.13734
Fujita K, Kume H, Matsuzaki K, Kawashima A, Ujike T, Nagahara A, et al. Proteomic analysis of urinary extracellular vesicles from high Gleason score prostate cancer. Sci Rep. 2017;7:1–9.
doi: 10.1038/srep42961
Linxweiler J, Junker K. Extracellular vesicles in urological malignancies: an update. Nat Rev Urol. 2020;17:11–27. https://doi.org/10.1038/s41585-019-0261-8 .
pubmed: 31827264 doi: 10.1038/s41585-019-0261-8
Matsuzaki K, Fujita K, Jingushi K, Kawashima A, Ujike T, Nagahara A, et al. MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma. Oncotarget. 2017;8:24668–78.
pubmed: 28160564 pmcid: 5421878 doi: 10.18632/oncotarget.14969
Tomiyama E, Matsuzaki K, Fujita K, Shiromizu T, Narumi R, Jingushi K, et al. Proteomic analysis of urinary and tissue-exudative extracellular vesicles to discover novel bladder cancer biomarkers. Cancer Sci. 2021;112:2033–45.
pubmed: 33721374 pmcid: 8088963 doi: 10.1111/cas.14881
Lee J, McKinney KQ, Pavlopoulos AJ, Niu M, Kang JW, Oh JW, et al. Altered proteome of extracellular vesicles derived from bladder cancer patients urine. Mol Cells. 2018;41:179–87.
pubmed: 29562735 pmcid: 5881091
Smalley DM, Sheman NE, Nelson K, Theodorescu D. Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J Proteome Res. 2008;7:2088–96.
pubmed: 18373357 doi: 10.1021/pr700775x
Chen CL, Lai YF, Tang P, Chien KY, Yu JS, Tsai CH, et al. Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients. J Proteome Res. 2012;11:5611–29.
pubmed: 23082778 doi: 10.1021/pr3008732
Lin SY, Chang CH, Wu HC, Lin CC, Chang KP, Yang CR, et al. Proteome profiling of urinary exosomes identifies alpha 1-antitrypsin and H2B1K as diagnostic and prognostic biomarkers for urothelial carcinoma. Sci Rep [Internet]. 2016;6:1–12. https://doi.org/10.1038/srep34446 .
doi: 10.1038/srep34446
Tomiyama E, Fujita K, Nonomura N. Urinary extracellular vesicles. In: Salvi S, Casadio V (eds). Urinary Biomarkers: Methods and Protocols, Methods in Molecular Biology, vol. 2292. (New York: Humana Press; 2021) pp 173–81.
Nakai W, Yoshida T, Diez D, Miyatake Y, Nishibu T, Imawaka N, et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016;6:1–11.
doi: 10.1038/srep33935
Tomiyama E, Fujita K, Rodriguez Pena MDC, Taheri D, Banno E, Kato T, et al. Expression of nectin-4 and pd-l1 in upper tract urothelial carcinoma. Int J Mol Sci. 2020;21:1–13.
doi: 10.3390/ijms21155390
Dadhania V, Zhang M, Zhang L, Bondaruk J, Majewski T, Siefker-Radtke A, et al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine. 2016;12:105–17.
pubmed: 27612592 pmcid: 5078592 doi: 10.1016/j.ebiom.2016.08.036
Tomiyama E, Fujita K, Hashimoto M, Miyamoto H, Netto GJ, Nonomura N. Programmed cell death-ligand 1 expression in different molecular subtypes of upper tract urothelial carcinoma. Int J Urol. 2022;29:89–90.
pubmed: 34519113 doi: 10.1111/iju.14689
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.
pubmed: 24157548 pmcid: 3969860 doi: 10.1038/nprot.2013.143
Gonzales P, Pisitkun T, Knepper MA. Urinary exosomes: is there a future? Nephrol Dial Transpl. 2008;23:1799–801.
doi: 10.1093/ndt/gfn058
Rood IM, Deegens JKJ, Merchant ML, Tamboer WPM, Wilkey DW, Wetzels JFM, et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int [Internet]. 2010;78:810–6. https://doi.org/10.1038/ki.2010.262
doi: 10.1038/ki.2010.262
Dhondt B, Geeurickx E, Tulkens J, Van Deun J, Vergauwen G, Lippens L, et al. Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine. J Extracell Vesicles. 2020. https://doi.org/10.1080/20013078.2020.1736935
Wei Q, Wei L, Zhang J, Li Z, Feng H, Ren L. EphA2-enriched exosomes promote cell migration and are a potential diagnostic serum marker in pancreatic cancer. Mol Med Rep. 2020;22:2941–7.
pubmed: 32945400 pmcid: 7466360
Gao Z, Han X, Zhu Y, Zhang H, Tian R, Wang Z. Drug-resistant cancer cell-derived exosomal EphA2 promotes breast cancer metastasis via the EphA2-Ephrin A1 reverse signaling. Cell Death Dis. 2021. https://doi.org/10.1038/s41419-021-03692-x
pubmed: 34930897 pmcid: 8688469 doi: 10.1038/s41419-021-03692-x
BioLegend, Inc. Purified anti-human EphA2 Antibody. 2013. https://www.biolegend.com/ja-jp/products/purified-anti-human-epha2-antibody-8365?GroupID=BLG15664 . Accessed 25 May 2022.
Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133:38–52.
pubmed: 18394988 doi: 10.1016/j.cell.2008.03.011
Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene. 2021;40:2483–95. https://doi.org/10.1038/s41388-021-01714-8
pubmed: 33686241 pmcid: 8035212 doi: 10.1038/s41388-021-01714-8
Dunne PD, Dasgupta S, Blayney JK, McArt DG, Redmond KL, Weir JA, et al. EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clin Cancer Res. 2016;22:230–42.
pubmed: 26283684 doi: 10.1158/1078-0432.CCR-15-0603
Brannan JM, Dong W, Prudkin L, Behrens C, Lotan R, Bekele BN, et al. Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non -small cell lung cancer. Clin Cancer Res. 2009;15:4423–30.
pubmed: 19531623 doi: 10.1158/1078-0432.CCR-09-0473
Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001;61:2301–6.
pubmed: 11280802
Brantley-Sieders DM, Zhuang G, Hicks D, Wei BF, Hwang Y, Cates JMM, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest. 2008;118:64–78.
pubmed: 18079969 doi: 10.1172/JCI33154
Yuan WJ, Ge J, Chen ZK, Wu SB, Shen H, Yang P, et al. Over-expression of EphA2 and ephrina-1 in human gastric adenocarcinoma and its prognostic value for postoperative patients. Dig Dis Sci. 2009;54:2410–7.
pubmed: 19101799 doi: 10.1007/s10620-008-0649-4
Miyazaki T, Kato H, Fukuchi M, Nakajima M, Kuwano H. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer. 2003;103:657–63.
pubmed: 12494475 doi: 10.1002/ijc.10860
Mudali SV, Fu B, Lakkur SS, Luo M, Embuscado EE, Iacobuzio-Donahue CA. Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clin Exp Metastasis. 2006;23:357–65.
pubmed: 17146615 pmcid: 2755224 doi: 10.1007/s10585-006-9045-7
Zeng G, Hu Z, Kinch MS, Pan CX, Flockhart DA, Kao C, et al. High-level expression of EphA2 receptor tyrosine kinase in prostatic intraepithelial neoplasia. Am J Pathol. 2003;163:2271–6. https://doi.org/10.1016/S0002-9440(10)63584-5
pubmed: 14633601 pmcid: 1892376 doi: 10.1016/S0002-9440(10)63584-5
Liu Y, Zhang X, Qiu Y, Huang D, Zhang S, Xie L, et al. Clinical significance of EphA2 expression in squamous-cell carcinoma of the head and neck. J Cancer Res Clin Oncol. 2011;137:761–9.
pubmed: 20614133 doi: 10.1007/s00432-010-0936-2
Wang LF, Fokas E, Juricko J, You A, Rose F, Pagenstecher A, et al. Increased expression of EphA7 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. BMC Cancer. 2008;8:151–6.
doi: 10.1186/1471-2407-8-79
Thaker PH, Deavers M, Celestino J, Thornton A, Fletcher MS, Landen CN, et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res. 2004;10:5145–50.
pubmed: 15297418 doi: 10.1158/1078-0432.CCR-03-0589
Abraham S, Knapp DW, Cheng L, Snyder PW, Mittal SK, Bangari DS, et al. Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder. Clin Cancer Res. 2006;12:353–60.
pubmed: 16428472 doi: 10.1158/1078-0432.CCR-05-1505
Kamoun W, Swindell E, Pien C, Luus L, Cain J, Pham M, et al. Targeting epha2 in bladder cancer using a novel antibody-directed nanotherapeutic. Pharmaceutics. 2020;12:1–18.
doi: 10.3390/pharmaceutics12100996
Mo J, Zhao X, Dong X, Liu T, Zhao N, Zhang D, et al. Effect of EphA2 knockdown on melanoma metastasis depends on intrinsic ephrinA1 level. Cell Oncol. 2020;43:655–67.
doi: 10.1007/s13402-020-00511-x
Hess AR, Seftor EA, Gardner LMG, Carles-Kinch K, Schneider GB, Seftor REB, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/Epha2). Cancer Res. 2001;61:3250–5.
pubmed: 11309274
Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun. 2017;8:1–11. https://doi.org/10.1038/ncomms15728
doi: 10.1038/ncomms15728

Auteurs

Eisuke Tomiyama (E)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Kazutoshi Fujita (K)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan. kfujita@med.kindai.ac.jp.
Department of Urology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan. kfujita@med.kindai.ac.jp.

Kyosuke Matsuzaki (K)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Ryohei Narumi (R)

Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.

Akinaru Yamamoto (A)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Toshihiro Uemura (T)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Gaku Yamamichi (G)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Yoko Koh (Y)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Makoto Matsushita (M)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Yujiro Hayashi (Y)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Mamoru Hashimoto (M)

Department of Urology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.

Eri Banno (E)

Department of Urology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.

Taigo Kato (T)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Koji Hatano (K)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Atsunari Kawashima (A)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Motohide Uemura (M)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Ryo Ukekawa (R)

FUJIFILM Wako Pure Chemical Corporation, Takata-cho, Amagasaki, Hyogo, 661-0963, Japan.

Tetsuya Takao (T)

Department of Urology, Osaka General Medical Center, Bandai-higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan.

Shingo Takada (S)

Department of Urology, Osaka Police Hospital, Kitayama-cho, Tennoji-ku, Osaka, 543-0035, Japan.

Hirotsugu Uemura (H)

Department of Urology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.

Jun Adachi (J)

Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.

Takeshi Tomonaga (T)

Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.

Norio Nonomura (N)

Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH