Investigation of tracer gas transport in a new numerical model of lung acini.
Acinar model
Convection
Diffusion
Gas distribution
Single branch-point model
Journal
Medical & biological engineering & computing
ISSN: 1741-0444
Titre abrégé: Med Biol Eng Comput
Pays: United States
ID NLM: 7704869
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
21
10
2021
accepted:
07
06
2022
pubmed:
7
7
2022
medline:
13
8
2022
entrez:
6
7
2022
Statut:
ppublish
Résumé
Obstructive pulmonary diseases are associated with considerable morbidity. For an early diagnosis of these diseases, inert gas washouts can potentially be used. However, the complex interaction between lung anatomy and gas transport mechanisms complicates data analysis. In order to investigate this interaction, a numerical model, based on the finite difference method, consisting of two lung units connected in parallel, was developed to simulate the tracer gas transport within the human acinus. Firstly, the geometries of the units were varied and the diffusion coefficients (D) were kept constant. Secondly, D was changed and the geometry was kept constant. Furthermore, simple monoexponential growth functions were applied to evaluate the simulated data. In 109 of the 112 analyzed curves, monoexponential function matched simulated data with an accuracy of over 90%, potentially representing a suitable numerical tool to predict transport processes in further model extensions. For total flows greater than 5 × 10
Identifiants
pubmed: 35794345
doi: 10.1007/s11517-022-02608-x
pii: 10.1007/s11517-022-02608-x
pmc: PMC9365752
doi:
Substances chimiques
Gases
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2619-2637Informations de copyright
© 2022. The Author(s).
Références
Respiration. 2012;84(2):89-97
pubmed: 22868355
Respir Physiol Neurobiol. 2005 Aug 25;148(1-2):3-21
pubmed: 15921964
Eur Respir J. 2014 Nov;44(5):1210-22
pubmed: 25102960
Respir Physiol. 2001 Sep;127(2-3):241-8
pubmed: 11504593
J Appl Physiol Respir Environ Exerc Physiol. 1982 Mar;52(3):624-33
pubmed: 7068477
Respir Physiol. 1974 Jul;21(1):119-38
pubmed: 4846934
Comput Methods Programs Biomed. 2019 May;173:139-145
pubmed: 31046988
J Appl Physiol. 1975 Jun;38(6):990-5
pubmed: 1141139
Respiration. 2009;78(3):339-55
pubmed: 19521061
PLoS Comput Biol. 2019 Jun 17;15(6):e1007079
pubmed: 31206515
J Appl Physiol (1985). 2013 Jul 1;115(1):64-70
pubmed: 23599394
J Appl Physiol (1985). 2000 Nov;89(5):1859-67
pubmed: 11053337
Pneumologie. 2012 May;66(5):283-9
pubmed: 22477567
Eur Respir J. 2013 Mar;41(3):507-22
pubmed: 23397305
Biomech Model Mechanobiol. 2021 Dec;20(6):2451-2469
pubmed: 34515918
Swiss Med Wkly. 2017 Sep 05;147:w14483
pubmed: 28871575
Compr Physiol. 2016 Mar 15;6(2):827-95
pubmed: 27065169
J Appl Physiol Respir Environ Exerc Physiol. 1979 Aug;47(2):296-305
pubmed: 224024
Med Biol Eng Comput. 2017 Nov;55(11):1975-1987
pubmed: 28357624
PLoS One. 2013 Sep 09;8(9):e73335
pubmed: 24039916
Respir Care. 2020 Feb;65(2):233-251
pubmed: 31772069
Respir Physiol. 1981 Jun;44(3):325-37
pubmed: 7268221
Phys Rev Lett. 2005 Oct 14;95(16):168101
pubmed: 16241843
Eur Respir J. 2013 Feb;41(2):339-45
pubmed: 22599360
Anat Rec. 1988 Apr;220(4):401-14
pubmed: 3382030
J Appl Physiol. 1973 Sep;35(3):401-10
pubmed: 4732334
Respiration. 2012;84(1):4-11
pubmed: 22759947
J Appl Physiol (1985). 2011 Mar;110(3):756-63
pubmed: 21183626
Pulm Med. 2012;2012:542769
pubmed: 23150821
Respir Physiol. 1979 Feb;36(2):103-19
pubmed: 220688
Sci Rep. 2020 Jan 30;10(1):1527
pubmed: 32001782
PLoS One. 2018 Nov 29;13(11):e0208049
pubmed: 30496317
Phys Fluids (1994). 2021 Aug;33(8):081911
pubmed: 34552312
Eur Respir J. 2020 Jul 2;56(1):
pubmed: 32616553
J Appl Physiol. 1976 Mar;40(3):362-71
pubmed: 931850
Physiol Rev. 1987 Jul;67(3):750-96
pubmed: 3299409
J Biomech Eng. 2012 Jun;134(6):061001
pubmed: 22757498