Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine.
Journal
Horticulture research
ISSN: 2662-6810
Titre abrégé: Hortic Res
Pays: England
ID NLM: 101655540
Informations de publication
Date de publication:
2022
2022
Historique:
received:
08
10
2021
accepted:
20
04
2022
entrez:
7
7
2022
pubmed:
8
7
2022
medline:
8
7
2022
Statut:
epublish
Résumé
Grafting, which joins a scion from a cultivar with the stem of a rootstock from a grapevine wild relative, is commonly used in viticulture. Grafting has crucial effects on various phenotypes of the cultivar, including its phenology, biotic and abiotic resistance, berry metabolome, and coloration, but the underlying genetics and regulatory mechanisms are largely unexplored. In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at three developmental stages (45, 75, and 105 days after flowering) of the Crimson Seedless cultivar (
Identifiants
pubmed: 35795384
doi: 10.1093/hr/uhac103
pii: uhac103
pmc: PMC9251602
doi:
Types de publication
Journal Article
Langues
eng
Pagination
uhac103Informations de copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of Nanjing Agricultural University.
Références
Mol Plant. 2016 Oct 10;9(10):1395-1405
pubmed: 27450422
BMC Bioinformatics. 2011 Aug 17;12:343
pubmed: 21849042
Front Plant Sci. 2017 Nov 20;8:1990
pubmed: 29209349
Genome Biol. 2014;15(12):550
pubmed: 25516281
Bioinformatics. 2013 Mar 1;29(5):661-3
pubmed: 23325622
Plant Sci. 2021 May;306:110848
pubmed: 33775373
Hortic Res. 2020 Jun 1;7(1):83
pubmed: 32528695
Science. 2020 Aug 7;369(6504):698-702
pubmed: 32764072
J Chromatogr A. 2005 Nov 11;1094(1-2):34-41
pubmed: 16257286
Plant Physiol Biochem. 2013 Nov;72:21-34
pubmed: 23473981
Mol Plant. 2016 May 2;9(5):711-721
pubmed: 26854848
Plant Physiol. 2010 Nov;154(3):1439-59
pubmed: 20826702
Phytochemistry. 2001 Feb;56(3):229-36
pubmed: 11243449
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Plant Cell. 2012 Sep;24(9):3489-505
pubmed: 22948079
Nat Plants. 2019 Sep;5(9):965-979
pubmed: 31506640
Mamm Genome. 2007 Jul;18(6-7):463-72
pubmed: 17668265
BMC Plant Biol. 2012 Aug 21;12:149
pubmed: 22909020
Hortic Res. 2020 Aug 1;7:118
pubmed: 32821401
Hortic Res. 2018 Dec 1;5:59
pubmed: 30534386
Plant Cell. 2020 Dec;32(12):3662-3673
pubmed: 33077493
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Trends Plant Sci. 2013 Sep;18(9):477-83
pubmed: 23870661
Molecules. 2020 Jan 02;25(1):
pubmed: 31906542
Planta. 2015 Jul;242(1):283-93
pubmed: 25916310
PLoS One. 2011 Apr 07;6(4):e18230
pubmed: 21490971
J Agric Food Chem. 2019 Oct 23;67(42):11815-11824
pubmed: 31550160
Plant Cell Physiol. 2017 Sep 1;58(9):1431-1441
pubmed: 28575507
J Exp Bot. 2012 Apr;63(7):2437-47
pubmed: 22238451
Genome Biol. 2019 Dec 16;20(1):278
pubmed: 31842956
Plant Physiol. 2018 Nov;178(3):1187-1206
pubmed: 30224433
Annu Rev Genet. 2019 Dec 3;53:195-215
pubmed: 31424971
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
J Sci Food Agric. 2019 Apr;99(6):2846-2854
pubmed: 30447086
Food Chem Toxicol. 2005 Oct;43(10):1557-66
pubmed: 15964118
Funct Plant Biol. 2012 Sep;39(8):619-638
pubmed: 32480814
Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045
pubmed: 27924042
Phytochemistry. 2013 Jun;90:25-36
pubmed: 23522932
Hortic Res. 2021 Apr 1;8(1):69
pubmed: 33790260