S100A6 as a Constituent and Potential Marker of Adult and Cancer Stem Cells.


Journal

Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767

Informations de publication

Date de publication:
12 2022
Historique:
accepted: 24 05 2022
pubmed: 8 7 2022
medline: 3 11 2022
entrez: 7 7 2022
Statut: ppublish

Résumé

Adult or tissue stem cells are present in various tissues of the organism where they reside in a specific environment called the niche. Owing to their ability to generate a progeny that can proliferate and differentiate into specialized cell types, adult stem cells constitute a source of new cells necessary for tissue maintenance and/or regeneration. Under normal conditions they divide with a frequency matching the pace of tissue renewal but, following tissue damage, they can migrate to the site of injury and expand/divide intensively to facilitate tissue repair. For this reason much hope is being placed on the use of adult stem cells in regenerative therapies, including tissue engineering. Identification and characterization of tissue stem cells has been a laborious process due to their scarcity and lack of universal markers. Nonetheless, recent studies, employing various types of transcriptomic analyses, revealed some common trends in gene expression pattern among stem cells derived from different tissues, suggesting the importance of certain genes/proteins for the unique properties of these cells. S100A6, a small calcium binding protein, has been recognized as an important factor influencing cell proliferation and differentiation. Accumulating results show that S100A6 is a constituent of adult stem cells and, in some cases, may even be considered as their marker. Thus, in this review we summarize literature data concerning the presence of S100A6 in adult and cancer stem cells and speculate on its potential role and usefulness as a marker of these cells.

Identifiants

pubmed: 35796891
doi: 10.1007/s12015-022-10403-2
pii: 10.1007/s12015-022-10403-2
doi:

Substances chimiques

Biomarkers 0
Cell Cycle Proteins 0
S100 Calcium Binding Protein A6 0
S100A6 protein, human 105504-00-5

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2699-2708

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Clarke, G., Harley, P., Hubber, E. L., Manea, T., Manuelli, L., Read, E., Watt, F. M. (2018). Bench to bedside: Current advances in regenerative medicine. Current Opinion in Cell Biology, 55, 59–66. https://doi.org/10.1016/j.ceb.2018.05.006
doi: 10.1016/j.ceb.2018.05.006 pubmed: 30007127
Kolios, G., & Moodley, Y. (2013). Introduction to Stem Cells and Regenerative Medicine. Respiration, 85(1), 3–10. https://doi.org/10.1159/000345615
doi: 10.1159/000345615 pubmed: 23257690
Wabik, A., & Jones, P. H. (2015). Switching roles: The functional plasticity of adult tissue stem cells. EMBO Journal, 34(9), 1164–1179. https://doi.org/10.15252/embj.201490386
doi: 10.15252/embj.201490386 pubmed: 25812989 pmcid: 4426478
Simons, B. D., & Clevers, H. (2011). Strategies for homeostatic stem cell self-renewal in adult tissues. Cell, 145(6), 851–862. https://doi.org/10.1016/j.cell.2011.05.033
doi: 10.1016/j.cell.2011.05.033 pubmed: 21663791
Clarke, D., & Frisén, J. (2001). Differentiation potential of adult stem cells. Current Opinion in Genetics & Development, 11(5), 575–580. https://doi.org/10.1016/s0959-437x(00)00235-5
doi: 10.1016/s0959-437x(00)00235-5
Gola, A., & Fuchs, E. (2021). Environmental control of lineage plasticity and stem cell memory. Current Opinion in Cell Biology, 69, 88–95. https://doi.org/10.1016/j.ceb.2020.12.015
doi: 10.1016/j.ceb.2020.12.015 pubmed: 33535130 pmcid: 8058249
Grompe, M. (2012). Tissue stem cells: New tools and functional diversity. Cell Stem Cell, 10(6), 685–689. https://doi.org/10.1016/j.stem.2012.04.006
doi: 10.1016/j.stem.2012.04.006 pubmed: 22704508 pmcid: 3940056
Wang, L. J., Li, X. X., Hou, J., Song, X. H., Xie, W. H., & Shen, L. (2020). Integrated analyses of mouse stem cell transcriptomes provide clues for stem cell maintenance and transdifferentiation. Frontiers in Genetics, 11, 563798. https://doi.org/10.3389/fgene.2020.563798
doi: 10.3389/fgene.2020.563798 pubmed: 33101382 pmcid: 7500244
Leśniak, W., Słomnicki, ŁP., & Filipek, A. (2009). S100A6 - new facts and features. Biochemical and Biophysical Research Communications, 390(4), 1087–1092. https://doi.org/10.1016/j.bbrc.2009.10.150
doi: 10.1016/j.bbrc.2009.10.150 pubmed: 19891957
Leśniak, W., & Filipek, A. (1996). Ca2+-dependent interaction of calcyclin with membrane. Biochemical and Biophysical Research Communications, 220(2), 269–273. https://doi.org/10.1006/bbrc.1996.0394
doi: 10.1006/bbrc.1996.0394 pubmed: 8645294
Mandinova, A., Atar, D., Schafer, B. W., Spiess, M., Aebi, U., & Heizman, C. W. (1998). Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. Journal of Cell Science, 111(14), 2043–2054.
doi: 10.1242/jcs.111.14.2043 pubmed: 9645951
Stradal, T. B., & Gimona, M. (1999). Ca(2+)-dependent association of S100A6 (Calcyclin) with the plasma membrane and the nuclear envelope. Journal of Biological Chemistry, 274(44), 31593–31596. https://doi.org/10.1074/jbc.274.44.31593
doi: 10.1074/jbc.274.44.31593 pubmed: 10531365
Leśniak, W., Wilanowski, T., & Filipek, A. (2017). S100A6 - focus on recent developments. Biological Chemistry, 398(10), 1087–1094. https://doi.org/10.1515/hsz-2017-0125
doi: 10.1515/hsz-2017-0125 pubmed: 28343163
Jurewicz, E., Wyroba, E., & Filipek, A. (2018). Tubulin-dependent secretion of S100A6 and cellular signaling pathways activated by S100A6-integrin β1 interaction. Cellular Signalling, 42, 21–29. https://doi.org/10.1016/j.cellsig.2017.10.004
doi: 10.1016/j.cellsig.2017.10.004 pubmed: 29020611
Gonzalez, L. L., Garrie, K., & Turner, M. D. (2020). Role of S100 proteins in health and disease. Biochimica et Biophysica Acta, 1867(6), 118677. https://doi.org/10.1016/j.bbamcr.2020.118677
doi: 10.1016/j.bbamcr.2020.118677 pubmed: 32057918
Calabretta, B., Battini, R., Kaczmarek, L., de Riel, J. K., & Baserga, R. (1986). Molecular cloning of the cDNA for a growth factor-inducible gene with strong homology to S-100, a calcium-binding protein. Journal of Biological Chemistry, 261(27), 12628–12632.
doi: 10.1016/S0021-9258(18)67137-6 pubmed: 3755724
Słomnicki, L. P., & Leśniak, W. (2010). S100A6 (calcyclin) deficiency induces senescence-like changes in cell cycle, morphology and functional characteristics of mouse NIH 3T3 fibroblasts. Journal of Cellular Biochemistry, 109(3), 576–584. https://doi.org/10.1002/jcb.22434
doi: 10.1002/jcb.22434 pubmed: 20013795
Bao, L., Odell, A. F., Stephen, S. L., Wheatcroft, S. B., Walker, J. H., & Ponnambalam, S. (2012). The S100A6 calcium-binding protein regulates endothelial cell-cycle progression and senescence. FEBS Journal, 279(24), 4576–4588. https://doi.org/10.1111/febs.12044
doi: 10.1111/febs.12044 pubmed: 23095053
Lerchenmuller, C., Kramer, I., Bochaton-Piallat, M. L., Hirschberg, K., Busch, M., Katus, H. A., Peppel, K., Rosenzweig, A., Busch, H., Boerries, M., & Most, P. (2016). S100A6 regulates endothelial cell cycle progression by attenuating antiproliferative signal transducers and activators of transcription 1 signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(9), 1854–1867. https://doi.org/10.1161/ATVBAHA.115.306415
doi: 10.1161/ATVBAHA.115.306415 pubmed: 27386938 pmcid: 5001879
Słomnicki, ŁP., Nawrot, B., & Leśniak, W. (2009). S100A6 binds p53 and affects its activity. International Journal of Biochemistry & Cell Biology, 41(4), 784–790. https://doi.org/10.1016/j.jmb.2009.10.002
doi: 10.1016/j.jmb.2009.10.002
Graczyk, A., Słomnicki, L. P., & Lesniak, W. (2013). S100A6 competes with the TAZ2 domain of p300 for binding to p53 and attenuates p53 acetylation. Journal of Molecular Biology, 425(18), 3488–3494. https://doi.org/10.1016/j.jmb.2013.06.007
doi: 10.1016/j.jmb.2013.06.007 pubmed: 23796514
Li, P., Lv, X., Zhang, Z., & Xie, S. (2019). S100A6/miR193a regulates the proliferation, invasion, migration and angiogenesis of lung cancer cells through the P53 acetylation. American Journal of Translational Research, 11(4), 4634–4649.
pubmed: 31497188 pmcid: 6731400
Song, D., Xu, B., Shi, D., Li, S., & Cai, Y. (2020). S100A6 promotes proliferation and migration of HepG2 cells via increased ubiquitin-dependent degradation of p53. Open Med (Wars), 15(1), 317–326. https://doi.org/10.1515/med-2020-0101
doi: 10.1515/med-2020-0101
Graczyk-Jarzynka, A., Sobiak, B., Mlącki, M., Wilanowski, T., & Leśniak, W. (2017). S100A6 activates EGFR and its downstream signaling in HaCaT keratinocytes. Journal of Cellular Physiology, 234(10), 17561–17569. https://doi.org/10.1002/jcp.28379
doi: 10.1002/jcp.28379
Wang, X. H., Du, H., Li, L., Shao, D. F., Zhong, X. Y., Hu, Y., Liu, Y. Q., Xing, X. F., Cheng, X. J., Guo, T., Li, S., Li, Z. Y., Bu, Z. D., Wen, X. Z., & Zhan, g L.H. & Ji, J.F. (2017). Increased expression of S100A6 promotes cell proliferation in gastric cancer cells. Oncology Letters, 13(1), 222–230. https://doi.org/10.3892/ol.2016.5419
doi: 10.3892/ol.2016.5419 pubmed: 28123545
Li, A., Shi, D., Xu, B., Wang, J., Tang, Y. L., Xiao, W., Shen, G., Deng, W., & Zhao, C. (2017). S100A6 promotes cell proliferation in human nasopharyngeal carcinoma via the p38/MAPK signaling pathway. Molecular Carcinogenesis, 56(3), 972–984. https://doi.org/10.1002/mc.22563
doi: 10.1002/mc.22563 pubmed: 27596819
Li, A., Gu, Y., Li, X., Sun, H., Zha, H., Xie, J., Zhao, J., Huang, M., Chen, L., Peng, Q., Zhang, Y., Weng, Y., & Zhou, L. (2018). S100A6 promotes the proliferation and migration of cervical cancer cells via the PI3K/Akt signaling pathway. Oncol Lett, 15(4), 5685–5693. https://doi.org/10.3892/ol.2018.8018
doi: 10.3892/ol.2018.8018 pubmed: 29552203 pmcid: 5840553
Duan, L., Wu, R., Zou, Z., Wang, H., Ye, L., Li, H., Yuan, S., Li, X., Zha, H., Sun, H., Zhang, Y., Chen, X., & Zhou, L. (2014). S100A6 stimulates proliferation and migration of colorectal carcinoma cells through activation of the MAPK pathways. International Journal of Oncology, 44(3), 781–790. https://doi.org/10.3892/ijo.2013.2231
doi: 10.3892/ijo.2013.2231 pubmed: 24378749
Liu, Z., Zhang, X., Chen, M., Cao, Q., & Huang, D. (2015). Effect of S100A6 over-expression on β-catenin in endometriosis. The Journal of Obstetrics and Gynaecology Research, 41(9), 1457–1462. https://doi.org/10.1111/jog.12729
doi: 10.1111/jog.12729 pubmed: 26044826
Chen, H., Xu, C., Jin, Q., & Liu, Z. (2014). S100 protein family in human cancer. American Journal of Cancer Research, 4(2), 89–115.
pubmed: 24660101 pmcid: 3960449
Graczyk, A., & Leśniak, W. (2014). S100A6 expression in keratinocytes and its impact on epidermal differentiation. International Journal of Biochemistry & Cell Biology, 57, 135–141. https://doi.org/10.1016/j.biocel.2014.10.007
doi: 10.1016/j.biocel.2014.10.007
Li, Y., Wagner, E. R., Yan, Z., Wang, Z., Luther, G., Jiang, W., Ye, J., Wei, Q., Wang, J., Zhao, L., Lu, S., Wang, X., Mohammed, M. K., Tang, S., Liu, H., Fan, J., Zhang, F., Zou, Y., Song, D., … He, T. C. (2015). The calcium-binding protein S100A6 accelerates human osteosarcoma growth by promoting cell proliferation and inhibiting osteogenic differentiation. Cellular Physiology and Biochemistry, 37(6), 2375–2392. https://doi.org/10.1159/000438591
doi: 10.1159/000438591 pubmed: 26646427
Blanpain, C., & Fuchs, E. (2006). Epidermal stem cells of the skin. Annual Review of Cell and Developmental Biology, 22, 339–373. https://doi.org/10.1146/annurev.cellbio.22.010305.104357
doi: 10.1146/annurev.cellbio.22.010305.104357 pubmed: 16824012 pmcid: 2405915
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L., & Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118(5), 635–648. https://doi.org/10.1016/j.cell.2004.08.012
doi: 10.1016/j.cell.2004.08.012 pubmed: 15339667
Mignone, J. L., Roig-Lopez, J. L., Fedtsova, N., Schones, D. E., Manganas, L. N., Maletic-Savatic, M., Keyes, W. M., Mills, A. A., Gleiberman, A., Zhang, M. Q., & Enikolopov, G. (2007). Neural potential of a stem cell population in the hair follicle. Cell Cycle, 6(17), 2161–2170. https://doi.org/10.4161/cc.6.17.4593
doi: 10.4161/cc.6.17.4593 pubmed: 17873521
Leśniak, W., & Graczyk-Jarzynka, A. (2015). The S100 proteins in epidermis: Topology and function. Biochimica et Biophysica Acta, 1850(12), 2563–2572. https://doi.org/10.1016/j.bbagen.2015.09.015
doi: 10.1016/j.bbagen.2015.09.015 pubmed: 26409143
Ito, M., & Kizawa, K. (2001). Expression of calcium-binding S100 proteins A4 and A6 in regions of the epithelial sac associated with the onset of hair follicle regeneration. The Journal of Investigative Dermatology, 116(6), 956–963. https://doi.org/10.1046/j.0022-202x.2001.01369.x
doi: 10.1046/j.0022-202x.2001.01369.x pubmed: 11407987
Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., & Fuchs, E. (2004). Defining the epithelial stem cell niche in skin. Science, 303(5656), 359–363. https://doi.org/10.1126/science.1092436
doi: 10.1126/science.1092436 pubmed: 14671312
Ouji, Y., Yoshikawa, M., Nishiofuku, M., Ouji-Sageshima, N., Kubo, A., & Ishizaka, S. (2010). Effects of Wnt-10b on proliferation and differentiation of adult murine skin-derived CD34 and CD49f double-positive cells. Journal of Bioscience and Bioengineering, 110(2), 217–222. https://doi.org/10.1016/j.jbiosc.2010.01.020
doi: 10.1016/j.jbiosc.2010.01.020 pubmed: 20547359
Joost, S., Zeisel, A., Jacob, T., Sun, X., La Manno, G., Lönnerberg, P., Linnarsson, S., & Kasper, M. (2016). Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity. Cell Systems, 3, 221-237.e9. https://doi.org/10.1016/j.cels.2016.08.010
doi: 10.1016/j.cels.2016.08.010 pubmed: 27641957 pmcid: 5052454
Chovatiya, G., Ghuwalewala, S., Walter, L. D., Cosgrove, B. D., & Tumbar, T. (2021). High- resolution single-cell transcriptomics reveals heterogeneity of self-renewing hair follicle stem cells. Experimental Dermatology, 30(4), 457–471. https://doi.org/10.1111/exd.14262
doi: 10.1111/exd.14262 pubmed: 33319418 pmcid: 8016723
Joost, S., Jacob, T., Sun, X., Annusver, K., La Manno, G., Sur, I., & Kasper, M. (2018). Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing. Cell Reports, 25(3), 585-597.e7. https://doi.org/10.1016/j.celrep.2018.09.059
doi: 10.1016/j.celrep.2018.09.059 pubmed: 30332640
Doulatov, S., Notta, F., Laurenti, E., & Dick, J. E. (2012). Hematopoiesis: A human perspective. Cell Stem Cell, 10(2), 120–136. https://doi.org/10.1016/j.stem.2012.01.006
doi: 10.1016/j.stem.2012.01.006 pubmed: 22305562
Ikuta, K., & Weissman, I. L. (1992). Evidence that hematopoietic stem cells express mouse c- kit but do not depend on steel factor for their generation. Proceedings of the National academy of Sciences of the United States of America, 89(4), 1502–1506. https://doi.org/10.1073/pnas.89.4.1502
doi: 10.1073/pnas.89.4.1502 pubmed: 1371359 pmcid: 48479
Nestorowa, S., Hamey, F. K., Pijuan Sala, B., Diamanti, E., Shepherd, M., Laurenti, E., Wilson, N. K., Kent, D. G., & Göttgens, B. (2016). A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood, 128(8), e20-31. https://doi.org/10.1182/blood-2016-05-716480
doi: 10.1182/blood-2016-05-716480 pubmed: 27365425 pmcid: 5305050
Pei, W., Shang, F., Wang, X., Fanti, A. K., Greco, A., Busch, K., Klapproth, K., Zhang, Q., Quedenau, C., Sauer, S., Feyerabend, T. B., Höfer, T., & Rodewald, H. R. (2020). Resolving Fates and Single-Cell Transcriptomes of Hematopoietic Stem Cell Clones by PolyloxExpress Barcoding. Cell Stem Cell, 27(3), 383–395, e8. https://doi.org/10.1016/j.stem.2020.07.018
doi: 10.1016/j.stem.2020.07.018 pubmed: 32783885
Grahn, T. H. M., Niroula, A., Végvári, Á., Oburoglu, L., Pertesi, M., Warsi, S., Safi, F., Miharada, N., Capellera-Garcia, S., Siva, K., Liu, Y., Rörby, E., Nilsson, B., Zubarev, R. A., & Karlsson, S. (2020). S100A6 is a critical regulator of hematopoietic stem cells. Leukemia, 34(12), 3439. https://doi.org/10.1038/s41375-020-0971-1
doi: 10.1038/s41375-020-0971-1 pubmed: 32665696 pmcid: 7962579
Altman, J., & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. The Journal of Comparative Neurology, 124(3), 319–335. https://doi.org/10.1002/cne.901240303
doi: 10.1002/cne.901240303 pubmed: 5861717
Richards, L. J., Kilpatrick, T. J., & Bartlett, P. F. (1992). De novo generation of neuronal cells from the adult mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 89(18), 8591–8595. https://doi.org/10.1073/pnas.89.18.8591
doi: 10.1073/pnas.89.18.8591 pubmed: 1528866 pmcid: 49966
Bonaguidi, M. A., Wheeler, M. A., Shapiro, J. S., Stadel, R. P., Sun, G. J., Ming, G. L., & Song, H. (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7), 1142–1155. https://doi.org/10.1016/j.cell.2011.05.024
doi: 10.1016/j.cell.2011.05.024 pubmed: 21664664 pmcid: 3124562
Obernier, K., & Alvarez-Buylla, A. (2019). Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development, 146(4), dev156059. https://doi.org/10.1242/dev.156059
doi: 10.1242/dev.156059 pubmed: 30777863 pmcid: 6398449
Lim, D. A., & Alvarez-Buylla, A. (2016). The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harbor Perspectives in Biology, 8(5), a018820. https://doi.org/10.1101/cshperspect.a018820
doi: 10.1101/cshperspect.a018820 pubmed: 27048191 pmcid: 4852803
Yamada, J., & Jinno, S. (2014). S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus, 24(1), 89–101. https://doi.org/10.1002/hipo.22207
doi: 10.1002/hipo.22207 pubmed: 24115312
Bartkowska, K., Swiatek, I., Aniszewska, A., Jurewicz, E., Turlejski, K., Filipek, A., & Djavadian, R. L. (2017). Stress-Dependent Changes in the CacyBP/SIP Interacting Protein S100A6 in the Mouse Brain. PLoS ONE, 12(1), e0169760. https://doi.org/10.1371/journal.pone.0169760
doi: 10.1371/journal.pone.0169760 pubmed: 28068373 pmcid: 5221789
Kjell, J., Fischer-Sternjak, J., Thompson, A. J., Friess, C., Sticco, M. J., Salinas, F., Cox, J., Martinelli, D. C., Ninkovic, J., Franze, K., Schiller, H. B., & Götz, M. (2020). Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell, 26(2), 277-293.e8. https://doi.org/10.1016/j.stem.2020.01.002
doi: 10.1016/j.stem.2020.01.002 pubmed: 32032526 pmcid: 7005820
Kalamakis, G., Brüne, D., Ravichandran, S., Bolz, J., Fan, W., Ziebell, F., Stiehl, T., Catalá- Martinez, F., Kupke, J., Zhao, S., Llorens-Bobadilla, E., Bauer, K., Limpert, S., Berger, B., Christen, U., Schmezer, P., Mallm, J. P., Berninger, B., Anders, S., … Martin-Villalba, A. (2019). Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell, 176(6), 1407-1419.e14. https://doi.org/10.1016/j.cell.2019.01.040
doi: 10.1016/j.cell.2019.01.040 pubmed: 30827680
Basak, O., Krieger, T. G., Muraro, M. J., Wiebrands, K., Stange, D. E., Frias-Aldeguer, J., Rivron, N. C., van de Wetering, M., van Es, J. H., van Oudenaarden, A., Simons, B. D., & Clevers, H. (2018). Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proceedings of the National Academy of Sciences of the United States of America, 115(4), E610–E619. https://doi.org/10.1073/pnas.1715911114
doi: 10.1073/pnas.1715911114 pubmed: 29311336 pmcid: 5789932
Llorens-Bobadilla, E., Zhao, S., Baser, A., Saiz-Castro, G., Zwadlo, K., & Martin-Villalba, A. (2015). Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell, 17(3), 329–340. https://doi.org/10.1016/j.stem.2015.07.002
doi: 10.1016/j.stem.2015.07.002 pubmed: 26235341
Shin, J., Berg, D. A., Zhu, Y., Shin, J. Y., Song, J., Bonaguidi, M. A., Enikolopov, G., Nauen, D. W., Christian, K. M., Ming, G. L., & Song, H. (2015). Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell, 17(3), 360–372. https://doi.org/10.1016/j.stem.2015.07.013
doi: 10.1016/j.stem.2015.07.013 pubmed: 26299571 pmcid: 8638014
Marques, S., van Bruggen, D., Vanichkina, D. P., Floriddia, E. M., Munguba, H., Väremo, L., Giacomello, S., Falcão, A. M., Meijer, M., Björklund, Å. K., Hjerling-Leffler, J., Taft, R. J., & Castelo-Branco, G. (2018). Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development. Developmental Cell, 46(4), 504-517.e7. https://doi.org/10.1016/j.devcel.2018.07.005
doi: 10.1016/j.devcel.2018.07.005 pubmed: 30078729 pmcid: 6104814
Beiter, R. M., Fernández-Castañeda, A., Rivet-Noor, C., Merchak, A., Bai, R., Slogar, E., Seki, S. M., Rosen, D. A., & Overall, C. C. (2020). Evidence for oligodendrocyte progenitor cell heterogeneity in the adult mouse brain. BioRxiv. https://doi.org/10.1101/2020.03.06.981373
doi: 10.1101/2020.03.06.981373
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. J., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905
doi: 10.1080/14653240600855905 pubmed: 16923606
Jia, Z., Wang, S., & Liu, Q. (2019). Identification of differentially expressed genes by single-cell transcriptional profiling of umbilical cord and synovial fluid mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 24(2), 1945–1957. https://doi.org/10.1111/jcmm.14891
doi: 10.1111/jcmm.14891 pubmed: 31845522 pmcid: 6991657
Luo, T., Liu, Q., Tan, A., Duan, L., Jia, Y., Nong, L., Tang, J., Zhou, W., Xie, W., Lu, Y., Yu, Q., & Liu, Y. (2020). Mesenchymal Stem Cell-Secreted Exosome Promotes Chemoresistance in Breast Cancer via Enhancing miR-21-5p-Mediated S100A6 Expression. Molecular Therapy - Oncolytics, 19, 283–293. https://doi.org/10.1016/j.omto.2020.10.008
doi: 10.1016/j.omto.2020.10.008 pubmed: 33294586 pmcid: 7689030
Xu, C., Zhao, J., Li, Q., Hou, L., Wang, Y., Li, S., Jiang, F., Zhu, Z., & Tian, L. (2020). Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Research & Therapy, 11(1), 503. https://doi.org/10.1186/s13287-020-02023-9
doi: 10.1186/s13287-020-02023-9
Capra, E., Beretta, R., Parazzi, V., Viganò, M., Lazzari, L., Baldi, A., & Giordano, R. (2012). Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages. Proteome Science, 10(1), 46. https://doi.org/10.1186/1477-5956-10-46
doi: 10.1186/1477-5956-10-46 pubmed: 22828447 pmcid: 3499380
Kwon, H. R., Kim, J. H., Woods, J. P., & Olson, L. (2021). An activating mutation in Pdgfrb causes skeletal stem cell defects with osteopenia and overgrowth in mice. BioRxiv. https://doi.org/10.1101/2021.01.21.427619
doi: 10.1101/2021.01.21.427619 pubmed: 34816258 pmcid: 8609893
Ragelle, H., Naba, A., Larson, B. L., Zhou, F., Prijić, M., Whittaker, C. A., Del Rosario, A., Langer, R., Hynes, R. O., & Anderson, D. G. (2017). Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials, 128, 147–159. https://doi.org/10.1016/j.biomaterials.2017.03.008
doi: 10.1016/j.biomaterials.2017.03.008 pubmed: 28327460 pmcid: 8191742
Li, N., Nakauka-Ddamba, A., Tobias, J., Jensen, S. T., & Lengner, C. J. (2016). Mouse Label- Retaining Cells Are Molecularly and Functionally Distinct From Reserve Intestinal Stem Cells. Gastroenterology, 151(2), 298-310.e7. https://doi.org/10.1053/j.gastro.2016.04.049
doi: 10.1053/j.gastro.2016.04.049 pubmed: 27237597
Sato, T., Sase, M., Ishikawa, S., Kajita, M., Asano, J., Sato, T., Mori, Y., & Ohteki, T. (2020). Characterization of radioresistant epithelial stem cell heterogeneity in the damaged mouse intestine. Science and Reports, 10(1), 8308. https://doi.org/10.1038/s41598-020-64987-1
doi: 10.1038/s41598-020-64987-1
Nusse, Y. M., Savage, A. K., Marangoni, P., Rosendahl-Huber, A. K. M., Landman, T. A., de Sauvage, F. J., Locksley, R. M., & Klein, O. D. (2018). Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature, 559(7712), 109–113. https://doi.org/10.1038/s41586-018-0257-1
doi: 10.1038/s41586-018-0257-1 pubmed: 29950724 pmcid: 6042247
Godoy, R. S., Cook, D. P., Cober, N. D., Deng, Y., Wang, L., Chakravarti, A., Rowe, K., & Stewart, D. J. (2021). Newly Emergent Apelin Expressing Endothelial Stem-like Cells Orchestrate Lung Microvascular Repair. BioRxiv. https://doi.org/10.1101/2021.07.12.452061
doi: 10.1101/2021.07.12.452061
Lukowski, S. W., Lo, C. Y., Sharov, A. A., Nguyen, Q., Fang, L., Hung, S. S., Zhu, L., Zhang, T., Grünert, U., Nguyen, T., Senabouth, A., Jabbari, J. S., Welby, E., Sowden, J. C., Waugh, H. S., Mackey, A., Pollock, G., Lamb, T. D., Wang, P. Y., … Wong, R. C. (2019). A single-cell transcriptome atlas of the adult human retina. EMBO Journal, 38, e100811. https://doi.org/10.15252/embj.2018100811
doi: 10.15252/embj.2018100811 pubmed: 31436334 pmcid: 6745503
Zhang, M., & Rosen, J. M. (2006). Stem cells in the etiology and treatment of cancer. Current Opinion in Genetics & Development, 16(1), 60–64. https://doi.org/10.1016/j.gde.2005.12.008
doi: 10.1016/j.gde.2005.12.008
Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: an old idea–a paradigm shift. Cancer Res, 66(4), 1883–1890. https://doi.org/10.1158/0008-5472.CAN-05-3153 Discussion 95–96.
doi: 10.1158/0008-5472.CAN-05-3153 pubmed: 16488983
Harris, M. A., Yang, H., Low, B. E., Mukherjee, J., Guha, A., Bronson, R. T., Shultz, L. D., Israel, M. A., & Yun, K. (2008). Cancer stem cells are enriched in the side population cells in a mouse model of glioma. Cancer Research, 68(24), 10051–10059. https://doi.org/10.1158/0008-5472.CAN-08-0786
doi: 10.1158/0008-5472.CAN-08-0786 pubmed: 19074870 pmcid: 2841432
Kanojia, D., Zhou, W., Zhang, J., Jie, C., Lo, P. K., Wang, Q., & Chen, H. (2012). Proteomic profiling of cancer stem cells derived from primary tumors of HER2/Neu transgenic mice. Proteomics, 12(22), 3407–3415. https://doi.org/10.1002/pmic.201200103
doi: 10.1002/pmic.201200103 pubmed: 22997041
Witte, K. E., Hertel, O., Windmöller, B. A., Helweg, L. P., Höving, A. L., Knabbe, C., Busche, T., Greiner, J. F. W., Kalinowski, J., Noll, T., Mertzlufft, F., Beshay, M., Pfitzenmaier, J., Kaltschmidt, B., Kaltschmidt, C., Banz-Jansen, C., & Simon, M. (2021). Nanopore Sequencing Reveals Global Transcriptome Signatures of Mitochondrial and Ribosomal Gene Expressions in Various Human Cancer Stem-like Cell Populations. Cancers, 13(5), 1136. https://doi.org/10.3390/cancers13051136
doi: 10.3390/cancers13051136 pubmed: 33800955 pmcid: 7962028
Ho, D. W., Tsui, Y. M., Sze, K. M., Chan, L. K., Cheung, T. T., Lee, E., Sham, P. C., Tsui, S. K., Lee, T. K., & Ng, I. O. (2019). Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Letters, 459, 176–185. https://doi.org/10.1016/j.canlet.2019.06.002
doi: 10.1016/j.canlet.2019.06.002 pubmed: 31195060
Yamashita, T., & Wang, X. W. (2013). Cancer stem cells in the development of liver cancer. The Journal of Clinical Investigation, 123(5), 1911–1918. https://doi.org/10.1172/JCI66024
doi: 10.1172/JCI66024 pubmed: 23635789 pmcid: 3635728
Praktiknjo, S. D., Obermayer, B., Zhu, Q., Fang, L., Liu, H., Quinn, H., Stoeckius, M., Kocks, C., Birchmeier, W., & Rajewsky, N. (2020). Tracing tumorigenesis in a solid tumor model at single-cell resolution. Nature Communications, 11(1), 991. https://doi.org/10.1038/s41467-020-14777-0
doi: 10.1038/s41467-020-14777-0 pubmed: 32080185 pmcid: 7033116
Yuan, H., Yan, M., Zhang, G., Liu, W., Deng, C., Liao, G., Xu, L., Luo, T., Yan, H., Long, Z., Shi, A., Zhao, T., Xiao, Y., & Li, X. (2019). CancerSEA: A cancer single-cell state atlas. Nucleic Acids Research, 47(D1), D900–D908. https://doi.org/10.1093/nar/gky939
doi: 10.1093/nar/gky939 pubmed: 30329142
Zimmer, D. B., Eubanks, J. O., Ramakrishnan, D., & Cristiciello, M. F. (2012). Evolution of the S100 family of calcium sensor proteins. Cell Calcium, 53(3), 170–179. https://doi.org/10.1016/j.ceca.2012.11.006
doi: 10.1016/j.ceca.2012.11.006 pubmed: 23246155
Vallely, K. M., Rustandi, R. R., Ellis, K. C., Varlamova, O., Bresnick, A. R., & Weber, D. J. (2002). Solution structure of human Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry, 41(42), 12670–12680. https://doi.org/10.1021/bi020365r
doi: 10.1021/bi020365r pubmed: 12379109

Auteurs

Wiesława Leśniak (W)

Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02- 093, Warsaw, Poland. w.lesniak@nencki.edu.pl.

Anna Filipek (A)

Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02- 093, Warsaw, Poland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH