Preparation of RNA Polymerase Complexes for Their Analysis by Single-Particle Cryo-Electron Microscopy.

Grid preparation Negative staining Plunge freezing Preparation of transcription complexes RNA polymerase I Single-particle cryo-electron microscopy

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 7 7 2022
pubmed: 8 7 2022
medline: 12 7 2022
Statut: ppublish

Résumé

Recent technological progress revealed new prospects of high-resolution structure determination of macromolecular complexes using cryo-electron microscopy (cryo-EM) . In the field of RNA polymerase (Pol) I research, a number of cryo-EM studies contributed to understanding the highly specialized mechanisms underlying the transcription of ribosomal RNA genes . Despite a broad applicability of the cryo-EM method itself, preparation of samples for high-resolution data collection can be challenging. Here, we describe strategies for the purification and stabilization of Pol I complexes, exemplarily considering advantages and disadvantages of the methodology. We further provide an easy-to-implement protocol for the coating of EM-grids with self-made carbon support films. In sum, we present an efficient workflow for cryo-grid preparation and optimization, including early stage cryo-EM screening that can be adapted to a wide range of soluble samples for high-resolution structure determination .

Identifiants

pubmed: 35796984
doi: 10.1007/978-1-0716-2501-9_6
pmc: PMC9761500
doi:

Substances chimiques

Macromolecular Substances 0
DNA-Directed RNA Polymerases EC 2.7.7.6

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

81-96

Informations de copyright

© 2022. The Author(s).

Références

J Biol Chem. 2019 Mar 29;294(13):5181-5197
pubmed: 30804214
Nature. 2016 Dec 22;540(7634):607-610
pubmed: 27842382
Nature. 2013 Mar 28;495(7442):481-6
pubmed: 23446344
Nat Methods. 2017 Mar;14(3):290-296
pubmed: 28165473
Mol Cell. 2016 Dec 15;64(6):1135-1143
pubmed: 27867008
J Struct Biol. 2018 Nov;204(2):270-275
pubmed: 30055234
Nat Commun. 2021 Feb 3;12(1):758
pubmed: 33536435
Nat Commun. 2016 Jul 15;7:12126
pubmed: 27418187
J Struct Biol. 2005 Oct;152(1):36-51
pubmed: 16182563
Annu Rev Biophys. 2019 May 6;48:45-61
pubmed: 30786229
Nat Methods. 2016 Jan;13(1):24-7
pubmed: 27110629
Cell. 2017 Mar 23;169(1):120-131.e22
pubmed: 28340337
Commun Biol. 2019 Jun 19;2:218
pubmed: 31240256
Elife. 2017 Mar 06;6:
pubmed: 28262097
Nat Methods. 2008 Jan;5(1):53-5
pubmed: 18157137
Curr Opin Struct Biol. 2018 Oct;52:8-15
pubmed: 30015202
Methods Enzymol. 2010;481:109-26
pubmed: 20887855
Rev Sci Instrum. 2016 Nov;87(11):114302
pubmed: 27910462
Nature. 2013 Oct 31;502(7473):644-9
pubmed: 24153184
Elife. 2019 Apr 01;8:
pubmed: 30932812
Q Rev Biophys. 1988 May;21(2):129-228
pubmed: 3043536
J Struct Biol. 2010 Apr;170(1):152-6
pubmed: 20035878
Nat Methods. 2019 Jun;16(6):471-477
pubmed: 31086343
Nature. 2015 Sep 10;525(7568):172-4
pubmed: 26354465
Methods Mol Biol. 2016;1455:85-97
pubmed: 27576712
Methods Enzymol. 2016;579:51-86
pubmed: 27572723
Methods. 2016 May 1;100:3-15
pubmed: 26931652
Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):8972-8977
pubmed: 30127008
J Struct Biol. 2011 Apr;174(1):234-8
pubmed: 20937392
Methods Mol Biol. 2011;718:3-22
pubmed: 21370039
Nature. 2013 Oct 31;502(7473):650-5
pubmed: 24153182
Nat Commun. 2020 Mar 5;11(1):1206
pubmed: 32139698
Nature. 2016 Sep 14;537(7620):339-46
pubmed: 27629640
Elife. 2018 Nov 09;7:
pubmed: 30412051
J Struct Biol. 2018 Oct;204(1):80-84
pubmed: 30017701
Nat Commun. 2016 Jul 15;7:12129
pubmed: 27418309
Nat Methods. 2019 Nov;16(11):1146-1152
pubmed: 31591575
Nat Methods. 2014 Jun;11(6):649-52
pubmed: 24747813
Nat Protoc. 2007;2(12):3239-46
pubmed: 18079724
Methods Mol Biol. 2016;1455:99-108
pubmed: 27576713
Science. 2014 Mar 28;343(6178):1443-4
pubmed: 24675944
Nat Protoc. 2008;3(2):330-9
pubmed: 18274535
Q Rev Biophys. 2016 Jan;49:e13
pubmed: 27658821
Nat Protoc. 2017 Feb;12(2):209-212
pubmed: 28055037
Methods Enzymol. 2016;579:87-102
pubmed: 27572724
Microscopy (Oxf). 2016 Feb;65(1):23-34
pubmed: 26671943
Elife. 2017 Jun 17;6:
pubmed: 28623663

Auteurs

Michael Pilsl (M)

Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.

Florian B Heiss (FB)

Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.

Gisela Pöll (G)

Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.

Mona Höcherl (M)

Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.

Philipp Milkereit (P)

Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.

Christoph Engel (C)

Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany. christoph.engel@ur.de.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Cryoelectron Microscopy Algorithms Image Processing, Computer-Assisted Consensus Software

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Structural basis for molecular assembly of fucoxanthin chlorophyll

Koji Kato, Yoshiki Nakajima, Jian Xing et al.
1.00
Diatoms Photosystem I Protein Complex Chlorophyll Binding Proteins Cryoelectron Microscopy Light-Harvesting Protein Complexes

Classifications MeSH